Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the sample mean and median of the given population data, follow these steps:
### Step 1: List the Population Data
Here is the population data for the states:
- Alaska: 741,894
- Arizona: 6,931,071
- California: 39,250,017
- Colorado: 5,540,545
- Connecticut: 3,576,452
- Florida: 20,612,439
- Illinois: 12,801,539
- Iowa: 3,134,693
- Kansas: 2,907,289
- Maryland: 6,016,447
- Missouri: 6,093,000
- Montana: 1,042,520
- Nebraska: 1,907,116
- New Mexico: 2,081,015
- North Dakota: 757,952
- Oklahoma: 3,923,561
- South Dakota: 865,454
- Washington: 7,288,000
- West Virginia: 1,834,102
- Wyoming: 585,501
### Step 2: Calculate the Sample Mean
The sample mean is the sum of all population values divided by the number of values.
Given 20 state populations, the values are:
[tex]\[ \text{populations} = [741,894, 6,093,000, 6,931,071, 1,042,520, 39,250,017, 1,907,116, 5,540,545, 2,081,015, 3,576,452, 757,952, 20,612,439, 3,923,561, 12,801,539, 865,454, 3,134,693, 7,288,000, 2,907,289, 1,834,102, 6,016,447, 585,501] \][/tex]
The sample mean formula is:
[tex]\[ \bar{x} = \frac{\sum x_i}{n} \][/tex]
Plugging in the values:
[tex]\[ \bar{x} \approx 6,394,530.35 \][/tex]
### Step 3: Calculate the Median
The median is the middle value of a dataset when it is ordered from smallest to largest. If the number of observations (n) is even, the median is the average of the two middle numbers.
Ordered population data:
[tex]\[ [585501, 741894, 757952, 865454, 1042520, 1834102, 1907116, 2081015, 2907289, 3134693, 3576452, 3923561, 5540545, 6016447, 6093000, 6931071, 7288000, 12801539, 20612439, 39250017] \][/tex]
Number of data values (n) is 20, which is even. Thus, the median is the average of the 10th and 11th values:
[tex]\[ \text{Median} = \frac{3134693 + 3576452}{2} = 3355572.5 \][/tex]
### Answers:
1. Sample mean: [tex]\(\bar{x} = 6,394,530.35\)[/tex]
2. Median: [tex]\( 3,355,572.5 \)[/tex]
### Step 1: List the Population Data
Here is the population data for the states:
- Alaska: 741,894
- Arizona: 6,931,071
- California: 39,250,017
- Colorado: 5,540,545
- Connecticut: 3,576,452
- Florida: 20,612,439
- Illinois: 12,801,539
- Iowa: 3,134,693
- Kansas: 2,907,289
- Maryland: 6,016,447
- Missouri: 6,093,000
- Montana: 1,042,520
- Nebraska: 1,907,116
- New Mexico: 2,081,015
- North Dakota: 757,952
- Oklahoma: 3,923,561
- South Dakota: 865,454
- Washington: 7,288,000
- West Virginia: 1,834,102
- Wyoming: 585,501
### Step 2: Calculate the Sample Mean
The sample mean is the sum of all population values divided by the number of values.
Given 20 state populations, the values are:
[tex]\[ \text{populations} = [741,894, 6,093,000, 6,931,071, 1,042,520, 39,250,017, 1,907,116, 5,540,545, 2,081,015, 3,576,452, 757,952, 20,612,439, 3,923,561, 12,801,539, 865,454, 3,134,693, 7,288,000, 2,907,289, 1,834,102, 6,016,447, 585,501] \][/tex]
The sample mean formula is:
[tex]\[ \bar{x} = \frac{\sum x_i}{n} \][/tex]
Plugging in the values:
[tex]\[ \bar{x} \approx 6,394,530.35 \][/tex]
### Step 3: Calculate the Median
The median is the middle value of a dataset when it is ordered from smallest to largest. If the number of observations (n) is even, the median is the average of the two middle numbers.
Ordered population data:
[tex]\[ [585501, 741894, 757952, 865454, 1042520, 1834102, 1907116, 2081015, 2907289, 3134693, 3576452, 3923561, 5540545, 6016447, 6093000, 6931071, 7288000, 12801539, 20612439, 39250017] \][/tex]
Number of data values (n) is 20, which is even. Thus, the median is the average of the 10th and 11th values:
[tex]\[ \text{Median} = \frac{3134693 + 3576452}{2} = 3355572.5 \][/tex]
### Answers:
1. Sample mean: [tex]\(\bar{x} = 6,394,530.35\)[/tex]
2. Median: [tex]\( 3,355,572.5 \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.