At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which functions have horizontal asymptotes, we'll analyze the limits of the given functions as [tex]\( x \)[/tex] approaches infinity.
1. Function [tex]\( f(x)=\frac{x^3-2 x+3}{x^2-5} \)[/tex]
To find the horizontal asymptote, consider the degrees of the numerator and the denominator:
[tex]\[ \lim_{x \to \infty} \frac{x^3-2x+3}{x^2-5}. \][/tex]
Here, the degree of the numerator is 3 and the degree of the denominator is 2. Since the degree of the numerator is higher, this function does not have a horizontal asymptote.
2. Function [tex]\( v(x)=\frac{x^2-1}{x^2-5} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5}. \][/tex]
Since the degrees of the numerator and the denominator are the same, the horizontal asymptote is given by the ratio of the leading coefficients:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5} = \frac{1}{1} = 1. \][/tex]
Thus, this function [tex]\( v(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 1 \)[/tex].
3. Function [tex]\( g(x)=\frac{1-x}{x^2+2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2}. \][/tex]
Here, the degree of the numerator is 1 and the degree of the denominator is 2. Since the degree of the denominator is higher, this function has a horizontal asymptote at [tex]\( y = 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2} = 0. \][/tex]
Thus, [tex]\( g(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
4. Function [tex]\( w(x)=\frac{x+3 x^4}{x^2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x+3x^4}{x^2}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x(1 + 3x^3)}{x^2} = \lim_{x \to \infty} \frac{1 + 3x^3}{x} = \lim_{x \to \infty} (3x^2) \rightarrow \infty \text{ or } -\infty. \][/tex]
Since this limit grows without bound, [tex]\( w(x) \)[/tex] does not have a horizontal asymptote.
5. Function [tex]\( h(x)=\frac{x^3}{x^2-5 x^4} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2-5x^4}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2(1-5x^2)} = \lim_{x \to \infty} \frac{x}{1-5x^2} = \lim_{x \to \infty} -\frac{1}{5x} \rightarrow 0. \][/tex]
Thus, [tex]\( h(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
Functions that have horizontal asymptotes are:
[tex]\[ v(x) = \frac{x^2-1}{x^2-5}, \quad g(x) = \frac{1-x}{x^2+2}, \quad \text{and} \quad h(x) = \frac{x^3}{x^2-5x^4}. \][/tex]
1. Function [tex]\( f(x)=\frac{x^3-2 x+3}{x^2-5} \)[/tex]
To find the horizontal asymptote, consider the degrees of the numerator and the denominator:
[tex]\[ \lim_{x \to \infty} \frac{x^3-2x+3}{x^2-5}. \][/tex]
Here, the degree of the numerator is 3 and the degree of the denominator is 2. Since the degree of the numerator is higher, this function does not have a horizontal asymptote.
2. Function [tex]\( v(x)=\frac{x^2-1}{x^2-5} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5}. \][/tex]
Since the degrees of the numerator and the denominator are the same, the horizontal asymptote is given by the ratio of the leading coefficients:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5} = \frac{1}{1} = 1. \][/tex]
Thus, this function [tex]\( v(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 1 \)[/tex].
3. Function [tex]\( g(x)=\frac{1-x}{x^2+2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2}. \][/tex]
Here, the degree of the numerator is 1 and the degree of the denominator is 2. Since the degree of the denominator is higher, this function has a horizontal asymptote at [tex]\( y = 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2} = 0. \][/tex]
Thus, [tex]\( g(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
4. Function [tex]\( w(x)=\frac{x+3 x^4}{x^2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x+3x^4}{x^2}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x(1 + 3x^3)}{x^2} = \lim_{x \to \infty} \frac{1 + 3x^3}{x} = \lim_{x \to \infty} (3x^2) \rightarrow \infty \text{ or } -\infty. \][/tex]
Since this limit grows without bound, [tex]\( w(x) \)[/tex] does not have a horizontal asymptote.
5. Function [tex]\( h(x)=\frac{x^3}{x^2-5 x^4} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2-5x^4}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2(1-5x^2)} = \lim_{x \to \infty} \frac{x}{1-5x^2} = \lim_{x \to \infty} -\frac{1}{5x} \rightarrow 0. \][/tex]
Thus, [tex]\( h(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
Functions that have horizontal asymptotes are:
[tex]\[ v(x) = \frac{x^2-1}{x^2-5}, \quad g(x) = \frac{1-x}{x^2+2}, \quad \text{and} \quad h(x) = \frac{x^3}{x^2-5x^4}. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.