Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which functions have horizontal asymptotes, we'll analyze the limits of the given functions as [tex]\( x \)[/tex] approaches infinity.
1. Function [tex]\( f(x)=\frac{x^3-2 x+3}{x^2-5} \)[/tex]
To find the horizontal asymptote, consider the degrees of the numerator and the denominator:
[tex]\[ \lim_{x \to \infty} \frac{x^3-2x+3}{x^2-5}. \][/tex]
Here, the degree of the numerator is 3 and the degree of the denominator is 2. Since the degree of the numerator is higher, this function does not have a horizontal asymptote.
2. Function [tex]\( v(x)=\frac{x^2-1}{x^2-5} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5}. \][/tex]
Since the degrees of the numerator and the denominator are the same, the horizontal asymptote is given by the ratio of the leading coefficients:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5} = \frac{1}{1} = 1. \][/tex]
Thus, this function [tex]\( v(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 1 \)[/tex].
3. Function [tex]\( g(x)=\frac{1-x}{x^2+2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2}. \][/tex]
Here, the degree of the numerator is 1 and the degree of the denominator is 2. Since the degree of the denominator is higher, this function has a horizontal asymptote at [tex]\( y = 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2} = 0. \][/tex]
Thus, [tex]\( g(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
4. Function [tex]\( w(x)=\frac{x+3 x^4}{x^2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x+3x^4}{x^2}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x(1 + 3x^3)}{x^2} = \lim_{x \to \infty} \frac{1 + 3x^3}{x} = \lim_{x \to \infty} (3x^2) \rightarrow \infty \text{ or } -\infty. \][/tex]
Since this limit grows without bound, [tex]\( w(x) \)[/tex] does not have a horizontal asymptote.
5. Function [tex]\( h(x)=\frac{x^3}{x^2-5 x^4} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2-5x^4}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2(1-5x^2)} = \lim_{x \to \infty} \frac{x}{1-5x^2} = \lim_{x \to \infty} -\frac{1}{5x} \rightarrow 0. \][/tex]
Thus, [tex]\( h(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
Functions that have horizontal asymptotes are:
[tex]\[ v(x) = \frac{x^2-1}{x^2-5}, \quad g(x) = \frac{1-x}{x^2+2}, \quad \text{and} \quad h(x) = \frac{x^3}{x^2-5x^4}. \][/tex]
1. Function [tex]\( f(x)=\frac{x^3-2 x+3}{x^2-5} \)[/tex]
To find the horizontal asymptote, consider the degrees of the numerator and the denominator:
[tex]\[ \lim_{x \to \infty} \frac{x^3-2x+3}{x^2-5}. \][/tex]
Here, the degree of the numerator is 3 and the degree of the denominator is 2. Since the degree of the numerator is higher, this function does not have a horizontal asymptote.
2. Function [tex]\( v(x)=\frac{x^2-1}{x^2-5} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5}. \][/tex]
Since the degrees of the numerator and the denominator are the same, the horizontal asymptote is given by the ratio of the leading coefficients:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5} = \frac{1}{1} = 1. \][/tex]
Thus, this function [tex]\( v(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 1 \)[/tex].
3. Function [tex]\( g(x)=\frac{1-x}{x^2+2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2}. \][/tex]
Here, the degree of the numerator is 1 and the degree of the denominator is 2. Since the degree of the denominator is higher, this function has a horizontal asymptote at [tex]\( y = 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2} = 0. \][/tex]
Thus, [tex]\( g(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
4. Function [tex]\( w(x)=\frac{x+3 x^4}{x^2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x+3x^4}{x^2}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x(1 + 3x^3)}{x^2} = \lim_{x \to \infty} \frac{1 + 3x^3}{x} = \lim_{x \to \infty} (3x^2) \rightarrow \infty \text{ or } -\infty. \][/tex]
Since this limit grows without bound, [tex]\( w(x) \)[/tex] does not have a horizontal asymptote.
5. Function [tex]\( h(x)=\frac{x^3}{x^2-5 x^4} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2-5x^4}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2(1-5x^2)} = \lim_{x \to \infty} \frac{x}{1-5x^2} = \lim_{x \to \infty} -\frac{1}{5x} \rightarrow 0. \][/tex]
Thus, [tex]\( h(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
Functions that have horizontal asymptotes are:
[tex]\[ v(x) = \frac{x^2-1}{x^2-5}, \quad g(x) = \frac{1-x}{x^2+2}, \quad \text{and} \quad h(x) = \frac{x^3}{x^2-5x^4}. \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.