Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem, follow these steps:
1. Understand the problem: We need to find the measure of the central angle, [tex]\( m \angle B \)[/tex], in radians that subtends an arc [tex]\( BC \)[/tex] whose length is given as [tex]\( 21 \pi \)[/tex] units. The circle has a radius of 15 units.
2. Use the formula for arc length: The formula for the length of an arc ([tex]\( L \)[/tex]) subtended by a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\( r \)[/tex] is given by:
[tex]\[ L = r \theta \][/tex]
Here [tex]\( L = 21 \pi \)[/tex] and [tex]\( r = 15 \)[/tex]. We can set up the equation:
[tex]\[ 21 \pi = 15 \theta \][/tex]
3. Solve for [tex]\(\theta\)[/tex]: To find the central angle [tex]\(\theta\)[/tex], divide both sides of the equation by the radius [tex]\( r \)[/tex]:
[tex]\[ \theta = \frac{21 \pi}{15} \][/tex]
4. Simplify the expression: Simplify the fraction:
[tex]\[ \theta = \frac{21 \pi}{15} = \frac{7 \pi}{5} \][/tex]
5. Compare with the options: The measure of the central angle [tex]\( m \angle B \)[/tex] is [tex]\(\frac{7 \pi}{5}\)[/tex] radians.
So, the correct answer is:
D. [tex]\( \frac{7}{5} \pi \)[/tex]
1. Understand the problem: We need to find the measure of the central angle, [tex]\( m \angle B \)[/tex], in radians that subtends an arc [tex]\( BC \)[/tex] whose length is given as [tex]\( 21 \pi \)[/tex] units. The circle has a radius of 15 units.
2. Use the formula for arc length: The formula for the length of an arc ([tex]\( L \)[/tex]) subtended by a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\( r \)[/tex] is given by:
[tex]\[ L = r \theta \][/tex]
Here [tex]\( L = 21 \pi \)[/tex] and [tex]\( r = 15 \)[/tex]. We can set up the equation:
[tex]\[ 21 \pi = 15 \theta \][/tex]
3. Solve for [tex]\(\theta\)[/tex]: To find the central angle [tex]\(\theta\)[/tex], divide both sides of the equation by the radius [tex]\( r \)[/tex]:
[tex]\[ \theta = \frac{21 \pi}{15} \][/tex]
4. Simplify the expression: Simplify the fraction:
[tex]\[ \theta = \frac{21 \pi}{15} = \frac{7 \pi}{5} \][/tex]
5. Compare with the options: The measure of the central angle [tex]\( m \angle B \)[/tex] is [tex]\(\frac{7 \pi}{5}\)[/tex] radians.
So, the correct answer is:
D. [tex]\( \frac{7}{5} \pi \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.