Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem, follow these steps:
1. Understand the problem: We need to find the measure of the central angle, [tex]\( m \angle B \)[/tex], in radians that subtends an arc [tex]\( BC \)[/tex] whose length is given as [tex]\( 21 \pi \)[/tex] units. The circle has a radius of 15 units.
2. Use the formula for arc length: The formula for the length of an arc ([tex]\( L \)[/tex]) subtended by a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\( r \)[/tex] is given by:
[tex]\[ L = r \theta \][/tex]
Here [tex]\( L = 21 \pi \)[/tex] and [tex]\( r = 15 \)[/tex]. We can set up the equation:
[tex]\[ 21 \pi = 15 \theta \][/tex]
3. Solve for [tex]\(\theta\)[/tex]: To find the central angle [tex]\(\theta\)[/tex], divide both sides of the equation by the radius [tex]\( r \)[/tex]:
[tex]\[ \theta = \frac{21 \pi}{15} \][/tex]
4. Simplify the expression: Simplify the fraction:
[tex]\[ \theta = \frac{21 \pi}{15} = \frac{7 \pi}{5} \][/tex]
5. Compare with the options: The measure of the central angle [tex]\( m \angle B \)[/tex] is [tex]\(\frac{7 \pi}{5}\)[/tex] radians.
So, the correct answer is:
D. [tex]\( \frac{7}{5} \pi \)[/tex]
1. Understand the problem: We need to find the measure of the central angle, [tex]\( m \angle B \)[/tex], in radians that subtends an arc [tex]\( BC \)[/tex] whose length is given as [tex]\( 21 \pi \)[/tex] units. The circle has a radius of 15 units.
2. Use the formula for arc length: The formula for the length of an arc ([tex]\( L \)[/tex]) subtended by a central angle [tex]\(\theta\)[/tex] in a circle of radius [tex]\( r \)[/tex] is given by:
[tex]\[ L = r \theta \][/tex]
Here [tex]\( L = 21 \pi \)[/tex] and [tex]\( r = 15 \)[/tex]. We can set up the equation:
[tex]\[ 21 \pi = 15 \theta \][/tex]
3. Solve for [tex]\(\theta\)[/tex]: To find the central angle [tex]\(\theta\)[/tex], divide both sides of the equation by the radius [tex]\( r \)[/tex]:
[tex]\[ \theta = \frac{21 \pi}{15} \][/tex]
4. Simplify the expression: Simplify the fraction:
[tex]\[ \theta = \frac{21 \pi}{15} = \frac{7 \pi}{5} \][/tex]
5. Compare with the options: The measure of the central angle [tex]\( m \angle B \)[/tex] is [tex]\(\frac{7 \pi}{5}\)[/tex] radians.
So, the correct answer is:
D. [tex]\( \frac{7}{5} \pi \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.