Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's work step-by-step through the problem to find the needed information.
1. Identify the standard deviations of both samples:
- Standard deviation of the red box, [tex]\( \sigma_1 \)[/tex], is 3.868
- Standard deviation of the blue box, [tex]\( \sigma_2 \)[/tex], is 2.933
2. Identify the sample sizes:
- The sample size for the red box, [tex]\( N_1 \)[/tex], is 100
- The sample size for the blue box, [tex]\( N_2 \)[/tex], is 100
3. Calculate the standard deviation of the sample mean differences (let's denote it as [tex]\( \sigma_{\Delta \bar{X}} \)[/tex]):
The formula to calculate the standard deviation of the sample mean differences when two sample sizes and their standard deviations are given is:
[tex]\[ \sigma_{\Delta \bar{X}} = \sqrt{ \left( \frac{\sigma_1^2}{N_1} \right) + \left( \frac{\sigma_2^2}{N_2} \right)} \][/tex]
Substituting the given values:
[tex]\[ \sigma_{\Delta \bar{X}} = \sqrt{ \left( \frac{3.868^2}{100} \right) + \left( \frac{2.933^2}{100} \right)} \][/tex]
From the given data, after applying the necessary calculations, the result we obtain is:
[tex]\[ \sigma_{\Delta \bar{X}} \approx 0.4854 \][/tex]
Now, we summarize the findings in the given statements:
- The sample size of the session regarding the number of people who would purchase the red box, [tex]\( N_1 \)[/tex], is [tex]\( 100 \)[/tex].
- The sample size of the session regarding the number of people who would purchase the blue box, [tex]\( N_2 \)[/tex], is [tex]\( 100 \)[/tex].
- The standard deviation of the sample mean differences is approximately [tex]\( 0.485 \)[/tex].
1. Identify the standard deviations of both samples:
- Standard deviation of the red box, [tex]\( \sigma_1 \)[/tex], is 3.868
- Standard deviation of the blue box, [tex]\( \sigma_2 \)[/tex], is 2.933
2. Identify the sample sizes:
- The sample size for the red box, [tex]\( N_1 \)[/tex], is 100
- The sample size for the blue box, [tex]\( N_2 \)[/tex], is 100
3. Calculate the standard deviation of the sample mean differences (let's denote it as [tex]\( \sigma_{\Delta \bar{X}} \)[/tex]):
The formula to calculate the standard deviation of the sample mean differences when two sample sizes and their standard deviations are given is:
[tex]\[ \sigma_{\Delta \bar{X}} = \sqrt{ \left( \frac{\sigma_1^2}{N_1} \right) + \left( \frac{\sigma_2^2}{N_2} \right)} \][/tex]
Substituting the given values:
[tex]\[ \sigma_{\Delta \bar{X}} = \sqrt{ \left( \frac{3.868^2}{100} \right) + \left( \frac{2.933^2}{100} \right)} \][/tex]
From the given data, after applying the necessary calculations, the result we obtain is:
[tex]\[ \sigma_{\Delta \bar{X}} \approx 0.4854 \][/tex]
Now, we summarize the findings in the given statements:
- The sample size of the session regarding the number of people who would purchase the red box, [tex]\( N_1 \)[/tex], is [tex]\( 100 \)[/tex].
- The sample size of the session regarding the number of people who would purchase the blue box, [tex]\( N_2 \)[/tex], is [tex]\( 100 \)[/tex].
- The standard deviation of the sample mean differences is approximately [tex]\( 0.485 \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.