Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's break down the problem step-by-step to solve for [tex]\( x \)[/tex], the total amount that Isaiah spent at the store.
Isaiah spent \[tex]$19.60 on a gift, which was \(\frac{5}{7}\) of the total amount spent. To find the total amount spent, we can set up the equation \[ \frac{5}{7} x = 19.60 \] Next, we can solve for \( x \). 1. Multiply both sides of the equation by the reciprocal of \(\frac{5}{7}\), which is \(\frac{7}{5}\): \[ \left(\frac{5}{7}\right) x \cdot \left(\frac{7}{5}\right) = 19.60 \cdot \left(\frac{7}{5}\right) \] Simplifying the left side of the equation: \[ x = 19.60 \cdot \left(\frac{7}{5}\right) \] 2. Now, calculate the right side of the equation: \[ x = 19.60 \cdot \left(\frac{7}{5}\right) \] \[ x = 19.60 \cdot 1.4 \] \[ x = 27.44 \] Therefore, the total amount Isaiah spent is $[/tex]27.44.
Let's identify the correct statements from the options given:
1. [tex]\(\boxtimes \frac{5}{7}=\frac{x}{19.60}\)[/tex]
This option is incorrect. The correct relationship should be [tex]\(\frac{5}{7} x = 19.60\)[/tex].
2. [tex]\(\frac{5}{7} x=19.60\)[/tex]
This option is correct. It directly relates the fraction of the total amount spent to the given gift cost.
3. [tex]\(\frac{5}{7} \left(\frac{7}{5}\right) x=19.60 \left(\frac{7}{5}\right)\)[/tex]
This option is correct. It appropriately shows multiplying both sides by the reciprocal to solve for [tex]\( x \)[/tex].
4. [tex]\(\boxtimes \frac{5}{7}\left(\frac{7}{5}\right)=\frac{x}{19.80}\left(\frac{7}{5}\right)\)[/tex]
This option is incorrect. The equation has an incorrect transformation and incorrect value on the left and right sides.
5. [tex]\(x=27.44\)[/tex]
This option is correct. It provides the final solution for the total amount spent.
Thus, the three correct statements are:
- [tex]\(\frac{5}{7} x=19.60\)[/tex]
- [tex]\(\frac{5}{7} \left(\frac{7}{5}\right) x=19.60 \left(\frac{7}{5}\right)\)[/tex]
- [tex]\(x=27.44\)[/tex]
Isaiah spent \[tex]$19.60 on a gift, which was \(\frac{5}{7}\) of the total amount spent. To find the total amount spent, we can set up the equation \[ \frac{5}{7} x = 19.60 \] Next, we can solve for \( x \). 1. Multiply both sides of the equation by the reciprocal of \(\frac{5}{7}\), which is \(\frac{7}{5}\): \[ \left(\frac{5}{7}\right) x \cdot \left(\frac{7}{5}\right) = 19.60 \cdot \left(\frac{7}{5}\right) \] Simplifying the left side of the equation: \[ x = 19.60 \cdot \left(\frac{7}{5}\right) \] 2. Now, calculate the right side of the equation: \[ x = 19.60 \cdot \left(\frac{7}{5}\right) \] \[ x = 19.60 \cdot 1.4 \] \[ x = 27.44 \] Therefore, the total amount Isaiah spent is $[/tex]27.44.
Let's identify the correct statements from the options given:
1. [tex]\(\boxtimes \frac{5}{7}=\frac{x}{19.60}\)[/tex]
This option is incorrect. The correct relationship should be [tex]\(\frac{5}{7} x = 19.60\)[/tex].
2. [tex]\(\frac{5}{7} x=19.60\)[/tex]
This option is correct. It directly relates the fraction of the total amount spent to the given gift cost.
3. [tex]\(\frac{5}{7} \left(\frac{7}{5}\right) x=19.60 \left(\frac{7}{5}\right)\)[/tex]
This option is correct. It appropriately shows multiplying both sides by the reciprocal to solve for [tex]\( x \)[/tex].
4. [tex]\(\boxtimes \frac{5}{7}\left(\frac{7}{5}\right)=\frac{x}{19.80}\left(\frac{7}{5}\right)\)[/tex]
This option is incorrect. The equation has an incorrect transformation and incorrect value on the left and right sides.
5. [tex]\(x=27.44\)[/tex]
This option is correct. It provides the final solution for the total amount spent.
Thus, the three correct statements are:
- [tex]\(\frac{5}{7} x=19.60\)[/tex]
- [tex]\(\frac{5}{7} \left(\frac{7}{5}\right) x=19.60 \left(\frac{7}{5}\right)\)[/tex]
- [tex]\(x=27.44\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.