Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the given equation of the circle:
[tex]\[ (x + 7)^2 + (y + 7)^2 = 16 \][/tex]
This equation is in the standard form of a circle's equation [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
1. From the given equation, [tex]\((x + 7)^2 + (y + 7)^2 = 16\)[/tex], we can identify that [tex]\(h = -7\)[/tex] and [tex]\(k = -7\)[/tex] because the equation can be rewritten as:
[tex]\[ (x - (-7))^2 + (y - (-7))^2 = 16 \][/tex]
Therefore, the center of the circle is at [tex]\((-7, -7)\)[/tex].
2. The right-hand side of the equation is 16, which represents [tex]\(r^2\)[/tex], the square of the radius. This means:
[tex]\[ r^2 = 16 \][/tex]
3. To find the radius [tex]\(r\)[/tex], we take the square root of 16:
[tex]\[ r = \sqrt{16} \][/tex]
[tex]\[ r = 4 \][/tex]
Therefore, the radius of the circle is 4. The correct answer is:
B. 4
[tex]\[ (x + 7)^2 + (y + 7)^2 = 16 \][/tex]
This equation is in the standard form of a circle's equation [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
1. From the given equation, [tex]\((x + 7)^2 + (y + 7)^2 = 16\)[/tex], we can identify that [tex]\(h = -7\)[/tex] and [tex]\(k = -7\)[/tex] because the equation can be rewritten as:
[tex]\[ (x - (-7))^2 + (y - (-7))^2 = 16 \][/tex]
Therefore, the center of the circle is at [tex]\((-7, -7)\)[/tex].
2. The right-hand side of the equation is 16, which represents [tex]\(r^2\)[/tex], the square of the radius. This means:
[tex]\[ r^2 = 16 \][/tex]
3. To find the radius [tex]\(r\)[/tex], we take the square root of 16:
[tex]\[ r = \sqrt{16} \][/tex]
[tex]\[ r = 4 \][/tex]
Therefore, the radius of the circle is 4. The correct answer is:
B. 4
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.