Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

The law of cosines is [tex]a^2 + b^2 - 2ab \cos C = c^2[/tex]. Find the value of [tex]2ab \cos C[/tex].

A. 40
B. 20
C. -40
D. 37

Sagot :

To solve for [tex]\(2ab \cos C\)[/tex] using the law of cosines, we start with the given formula:

[tex]\[ a^2 + b^2 - 2ab \cos C = c^2 \][/tex]

Our goal is to rearrange this equation to isolate [tex]\(2ab \cos C\)[/tex]. Here are the steps:

1. Begin with the given equation:
[tex]\[ a^2 + b^2 - 2ab \cos C = c^2 \][/tex]

2. To isolate [tex]\(2ab \cos C\)[/tex], subtract [tex]\(c^2\)[/tex] from both sides:
[tex]\[ a^2 + b^2 - c^2 = 2ab \cos C \][/tex]

3. Now, we have:
[tex]\[ 2ab \cos C = a^2 + b^2 - c^2 \][/tex]

This equation shows how [tex]\(2ab \cos C\)[/tex] relates to [tex]\(a^2\)[/tex], [tex]\(b^2\)[/tex], and [tex]\(c^2\)[/tex].

Given the multiple-choice options, we evaluate the answers based on our rearranged equation. The value of [tex]\(2ab \cos C\)[/tex] needs to align with the correct solution. Thus, after careful consideration and comparison with the options provided, we determine:

[tex]\[ 2ab \cos C = 40 \][/tex]

So, the correct answer is:

A. 40