Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the intervals where the function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] is positive, we need to analyze the sign of the numerator and denominator, along with considering any critical points where the denominator might change sign.
### 1. Analyze the Function
The function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] can be rewritten as:
[tex]\[ f(x) = \frac{(3 - x)(3 + x)}{(x - 2)(x + 2)} \][/tex]
This factorization helps us identify the roots and potential sign changes of the function.
### 2. Critical Points and Asymptotes
The roots of the numerator are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]. The roots of the denominator, which are also vertical asymptotes, are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 3. Intervals to Check
Given the critical points [tex]\(x = -3, -2, 2,\)[/tex] and [tex]\( 3\)[/tex], we need to check the following intervals:
- [tex]\( (-\infty, -3) \)[/tex]
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (-2, 2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (3, \infty) \)[/tex]
### 4. Sign Analysis on Each Interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]
Choose a test point [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = \frac{9 - (-4)^2}{(-4)^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(-4) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\((-∞, -3)\)[/tex].
#### Interval [tex]\( (-3, -2) \)[/tex]
Choose a test point [tex]\( x = -2.5 \)[/tex]:
[tex]\[ f(-2.5) = \frac{9 - (-2.5)^2}{(-2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(-2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (-3, -2) \)[/tex].
#### Interval [tex]\( (-2, 2) \)[/tex]
Notice that within this interval, [tex]\( x = 0 \)[/tex] is a convenient test point:
[tex]\[ f(0) = \frac{9 - 0^2}{0^2 - 4} = \frac{9}{-4} = -2.25 \][/tex]
[tex]\( f(0) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\( (-2, 2) \)[/tex].
#### Interval [tex]\( (2, 3) \)[/tex]
Choose a test point [tex]\( x = 2.5 \)[/tex]:
[tex]\[ f(2.5) = \frac{9 - (2.5)^2}{(2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (2, 3) \)[/tex].
#### Interval [tex]\( (3, \infty) \)[/tex]
Choose a test point [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{9 - 4^2}{4^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(4) < 0 \)[/tex]
So, [tex]\( f(x) is not positive on \( (3, \infty) \)[/tex].
### Conclusion
[tex]\( f(x) \)[/tex] is positive on the intervals:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Therefore, the intervals for which [tex]\( f(x) \)[/tex] is positive are:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
### 1. Analyze the Function
The function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] can be rewritten as:
[tex]\[ f(x) = \frac{(3 - x)(3 + x)}{(x - 2)(x + 2)} \][/tex]
This factorization helps us identify the roots and potential sign changes of the function.
### 2. Critical Points and Asymptotes
The roots of the numerator are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]. The roots of the denominator, which are also vertical asymptotes, are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 3. Intervals to Check
Given the critical points [tex]\(x = -3, -2, 2,\)[/tex] and [tex]\( 3\)[/tex], we need to check the following intervals:
- [tex]\( (-\infty, -3) \)[/tex]
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (-2, 2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (3, \infty) \)[/tex]
### 4. Sign Analysis on Each Interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]
Choose a test point [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = \frac{9 - (-4)^2}{(-4)^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(-4) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\((-∞, -3)\)[/tex].
#### Interval [tex]\( (-3, -2) \)[/tex]
Choose a test point [tex]\( x = -2.5 \)[/tex]:
[tex]\[ f(-2.5) = \frac{9 - (-2.5)^2}{(-2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(-2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (-3, -2) \)[/tex].
#### Interval [tex]\( (-2, 2) \)[/tex]
Notice that within this interval, [tex]\( x = 0 \)[/tex] is a convenient test point:
[tex]\[ f(0) = \frac{9 - 0^2}{0^2 - 4} = \frac{9}{-4} = -2.25 \][/tex]
[tex]\( f(0) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\( (-2, 2) \)[/tex].
#### Interval [tex]\( (2, 3) \)[/tex]
Choose a test point [tex]\( x = 2.5 \)[/tex]:
[tex]\[ f(2.5) = \frac{9 - (2.5)^2}{(2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (2, 3) \)[/tex].
#### Interval [tex]\( (3, \infty) \)[/tex]
Choose a test point [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{9 - 4^2}{4^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(4) < 0 \)[/tex]
So, [tex]\( f(x) is not positive on \( (3, \infty) \)[/tex].
### Conclusion
[tex]\( f(x) \)[/tex] is positive on the intervals:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Therefore, the intervals for which [tex]\( f(x) \)[/tex] is positive are:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.