Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the intervals where the function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] is positive, we need to analyze the sign of the numerator and denominator, along with considering any critical points where the denominator might change sign.
### 1. Analyze the Function
The function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] can be rewritten as:
[tex]\[ f(x) = \frac{(3 - x)(3 + x)}{(x - 2)(x + 2)} \][/tex]
This factorization helps us identify the roots and potential sign changes of the function.
### 2. Critical Points and Asymptotes
The roots of the numerator are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]. The roots of the denominator, which are also vertical asymptotes, are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 3. Intervals to Check
Given the critical points [tex]\(x = -3, -2, 2,\)[/tex] and [tex]\( 3\)[/tex], we need to check the following intervals:
- [tex]\( (-\infty, -3) \)[/tex]
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (-2, 2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (3, \infty) \)[/tex]
### 4. Sign Analysis on Each Interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]
Choose a test point [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = \frac{9 - (-4)^2}{(-4)^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(-4) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\((-∞, -3)\)[/tex].
#### Interval [tex]\( (-3, -2) \)[/tex]
Choose a test point [tex]\( x = -2.5 \)[/tex]:
[tex]\[ f(-2.5) = \frac{9 - (-2.5)^2}{(-2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(-2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (-3, -2) \)[/tex].
#### Interval [tex]\( (-2, 2) \)[/tex]
Notice that within this interval, [tex]\( x = 0 \)[/tex] is a convenient test point:
[tex]\[ f(0) = \frac{9 - 0^2}{0^2 - 4} = \frac{9}{-4} = -2.25 \][/tex]
[tex]\( f(0) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\( (-2, 2) \)[/tex].
#### Interval [tex]\( (2, 3) \)[/tex]
Choose a test point [tex]\( x = 2.5 \)[/tex]:
[tex]\[ f(2.5) = \frac{9 - (2.5)^2}{(2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (2, 3) \)[/tex].
#### Interval [tex]\( (3, \infty) \)[/tex]
Choose a test point [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{9 - 4^2}{4^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(4) < 0 \)[/tex]
So, [tex]\( f(x) is not positive on \( (3, \infty) \)[/tex].
### Conclusion
[tex]\( f(x) \)[/tex] is positive on the intervals:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Therefore, the intervals for which [tex]\( f(x) \)[/tex] is positive are:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
### 1. Analyze the Function
The function [tex]\( f(x) = \frac{9 - x^2}{x^2 - 4} \)[/tex] can be rewritten as:
[tex]\[ f(x) = \frac{(3 - x)(3 + x)}{(x - 2)(x + 2)} \][/tex]
This factorization helps us identify the roots and potential sign changes of the function.
### 2. Critical Points and Asymptotes
The roots of the numerator are [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex]. The roots of the denominator, which are also vertical asymptotes, are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
### 3. Intervals to Check
Given the critical points [tex]\(x = -3, -2, 2,\)[/tex] and [tex]\( 3\)[/tex], we need to check the following intervals:
- [tex]\( (-\infty, -3) \)[/tex]
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (-2, 2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (3, \infty) \)[/tex]
### 4. Sign Analysis on Each Interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]
Choose a test point [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = \frac{9 - (-4)^2}{(-4)^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(-4) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\((-∞, -3)\)[/tex].
#### Interval [tex]\( (-3, -2) \)[/tex]
Choose a test point [tex]\( x = -2.5 \)[/tex]:
[tex]\[ f(-2.5) = \frac{9 - (-2.5)^2}{(-2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(-2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (-3, -2) \)[/tex].
#### Interval [tex]\( (-2, 2) \)[/tex]
Notice that within this interval, [tex]\( x = 0 \)[/tex] is a convenient test point:
[tex]\[ f(0) = \frac{9 - 0^2}{0^2 - 4} = \frac{9}{-4} = -2.25 \][/tex]
[tex]\( f(0) < 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is not positive on [tex]\( (-2, 2) \)[/tex].
#### Interval [tex]\( (2, 3) \)[/tex]
Choose a test point [tex]\( x = 2.5 \)[/tex]:
[tex]\[ f(2.5) = \frac{9 - (2.5)^2}{(2.5)^2 - 4} = \frac{9 - 6.25}{6.25 - 4} = \frac{2.75}{2.25} \][/tex]
[tex]\( f(2.5) > 0 \)[/tex]
So, [tex]\( f(x) \)[/tex] is positive on [tex]\( (2, 3) \)[/tex].
#### Interval [tex]\( (3, \infty) \)[/tex]
Choose a test point [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{9 - 4^2}{4^2 - 4} = \frac{9 - 16}{16 - 4} = \frac{-7}{12} \][/tex]
[tex]\( f(4) < 0 \)[/tex]
So, [tex]\( f(x) is not positive on \( (3, \infty) \)[/tex].
### Conclusion
[tex]\( f(x) \)[/tex] is positive on the intervals:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Therefore, the intervals for which [tex]\( f(x) \)[/tex] is positive are:
- [tex]\( (-3, -2) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.