At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which point lies on the circle represented by the equation [tex]\(x^2 + (y - 12)^2 = 25^2\)[/tex], we need to check each point given in the options to see if it satisfies this equation.
The circle equation is:
[tex]\[x^2 + (y - 12)^2 = 625\][/tex]
since [tex]\(625\)[/tex] is [tex]\(25^2\)[/tex].
Let's check each point:
Point A: [tex]\((20, -3)\)[/tex]
Substitute [tex]\(x = 20\)[/tex] and [tex]\(y = -3\)[/tex] into the equation:
[tex]\[20^2 + (-3 - 12)^2 = 400 + (-15)^2 \][/tex]
[tex]\[ = 400 + 225 \][/tex]
[tex]\[ = 625\][/tex]
So, the left side equals the right side [tex]\(625\)[/tex]. Therefore, point A satisfies the equation.
Point B: [tex]\((-7, 24)\)[/tex]
Substitute [tex]\(x = -7\)[/tex] and [tex]\(y = 24\)[/tex] into the equation:
[tex]\((-7)^2 + (24 - 12)^2 = 49 + 12^2 \] \[ = 49 + 144 \] \[ = 193\] The left side does not equal the right side \(625\)[/tex]. Therefore, point B does not satisfy the equation.
Point C: [tex]\((0, 13)\)[/tex]
Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = 13\)[/tex] into the equation:
[tex]\[0^2 + (13 - 12)^2 = 0 + 1^2 \][/tex]
[tex]\[ = 0 + 1 \][/tex]
[tex]\[ = 1\][/tex]
The left side does not equal the right side [tex]\(625\)[/tex]. Therefore, point C does not satisfy the equation.
Point D: [tex]\((-25, -13)\)[/tex]
Substitute [tex]\(x = -25\)[/tex] and [tex]\(y = -13\)[/tex] into the equation:
[tex]\((-25)^2 + (-13 - 12)^2 = 625 + (-25)^2 \] \[ = 625 + 625 \] \[ = 1250\] The left side does not equal the right side \(625\)[/tex]. Therefore, point D does not satisfy the equation.
From the calculations above, only point A [tex]\((20, -3)\)[/tex] satisfies the circle equation [tex]\(x^2 + (y - 12)^2 = 25^2\)[/tex].
Therefore, the point that lies on the circle is: [tex]\((20, -3)\)[/tex], and the answer is A.
The circle equation is:
[tex]\[x^2 + (y - 12)^2 = 625\][/tex]
since [tex]\(625\)[/tex] is [tex]\(25^2\)[/tex].
Let's check each point:
Point A: [tex]\((20, -3)\)[/tex]
Substitute [tex]\(x = 20\)[/tex] and [tex]\(y = -3\)[/tex] into the equation:
[tex]\[20^2 + (-3 - 12)^2 = 400 + (-15)^2 \][/tex]
[tex]\[ = 400 + 225 \][/tex]
[tex]\[ = 625\][/tex]
So, the left side equals the right side [tex]\(625\)[/tex]. Therefore, point A satisfies the equation.
Point B: [tex]\((-7, 24)\)[/tex]
Substitute [tex]\(x = -7\)[/tex] and [tex]\(y = 24\)[/tex] into the equation:
[tex]\((-7)^2 + (24 - 12)^2 = 49 + 12^2 \] \[ = 49 + 144 \] \[ = 193\] The left side does not equal the right side \(625\)[/tex]. Therefore, point B does not satisfy the equation.
Point C: [tex]\((0, 13)\)[/tex]
Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = 13\)[/tex] into the equation:
[tex]\[0^2 + (13 - 12)^2 = 0 + 1^2 \][/tex]
[tex]\[ = 0 + 1 \][/tex]
[tex]\[ = 1\][/tex]
The left side does not equal the right side [tex]\(625\)[/tex]. Therefore, point C does not satisfy the equation.
Point D: [tex]\((-25, -13)\)[/tex]
Substitute [tex]\(x = -25\)[/tex] and [tex]\(y = -13\)[/tex] into the equation:
[tex]\((-25)^2 + (-13 - 12)^2 = 625 + (-25)^2 \] \[ = 625 + 625 \] \[ = 1250\] The left side does not equal the right side \(625\)[/tex]. Therefore, point D does not satisfy the equation.
From the calculations above, only point A [tex]\((20, -3)\)[/tex] satisfies the circle equation [tex]\(x^2 + (y - 12)^2 = 25^2\)[/tex].
Therefore, the point that lies on the circle is: [tex]\((20, -3)\)[/tex], and the answer is A.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.