At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the measures of the alternate exterior angles formed by two parallel lines cut by a transversal, follow these steps:
1. Set up the Equation:
- Since the lines are parallel, the alternate exterior angles are equal.
- Therefore, we can write the equation:
[tex]\[ 6x + 5 = 7x - 4 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
- First, simplify the equation by getting all terms involving [tex]\(x\)[/tex] on one side and constants on the other:
[tex]\[ 6x + 5 = 7x - 4 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 5 = x - 4 \][/tex]
Add 4 to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ 5 + 4 = x \][/tex]
Simplify:
[tex]\[ x = 9 \][/tex]
3. Substitute [tex]\(x\)[/tex] back into one of the angle expressions:
- Now that we have [tex]\(x = 9\)[/tex], we can substitute this value back into either of the angle expressions to find the actual measure of the angles.
- Using the first angle expression [tex]\((6x + 5)^\circ\)[/tex]:
[tex]\[ 6(9) + 5 = 54 + 5 = 59^\circ \][/tex]
4. Verify using the second angle expression:
- To ensure consistency, we can check the second angle expression [tex]\((7x - 4)^\circ\)[/tex]:
[tex]\[ 7(9) - 4 = 63 - 4 = 59^\circ \][/tex]
- Since both expressions yield the same angle measure, we have verified our solution.
Thus, the measure of each alternate exterior angle is [tex]\(59^\circ\)[/tex].
1. Set up the Equation:
- Since the lines are parallel, the alternate exterior angles are equal.
- Therefore, we can write the equation:
[tex]\[ 6x + 5 = 7x - 4 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
- First, simplify the equation by getting all terms involving [tex]\(x\)[/tex] on one side and constants on the other:
[tex]\[ 6x + 5 = 7x - 4 \][/tex]
Subtract [tex]\(6x\)[/tex] from both sides:
[tex]\[ 5 = x - 4 \][/tex]
Add 4 to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ 5 + 4 = x \][/tex]
Simplify:
[tex]\[ x = 9 \][/tex]
3. Substitute [tex]\(x\)[/tex] back into one of the angle expressions:
- Now that we have [tex]\(x = 9\)[/tex], we can substitute this value back into either of the angle expressions to find the actual measure of the angles.
- Using the first angle expression [tex]\((6x + 5)^\circ\)[/tex]:
[tex]\[ 6(9) + 5 = 54 + 5 = 59^\circ \][/tex]
4. Verify using the second angle expression:
- To ensure consistency, we can check the second angle expression [tex]\((7x - 4)^\circ\)[/tex]:
[tex]\[ 7(9) - 4 = 63 - 4 = 59^\circ \][/tex]
- Since both expressions yield the same angle measure, we have verified our solution.
Thus, the measure of each alternate exterior angle is [tex]\(59^\circ\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.