Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we will use the principles of the Ideal Gas Law, specifically Charles' Law, which states that the volume of a gas is directly proportional to its temperature when the pressure and the number of moles remain constant. The formula can be expressed as:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Here, [tex]\(V_1\)[/tex] and [tex]\(T_1\)[/tex] are the initial volume and temperature, and [tex]\(V_2\)[/tex] and [tex]\(T_2\)[/tex] are the final volume and temperature, respectively.
1. Given data:
- Initial volume, [tex]\(V_1 = 800.0\)[/tex] mL
- Initial temperature, [tex]\(T_1 = 115^{\circ} C\)[/tex]
- Final volume, [tex]\(V_2 = 400.0\)[/tex] mL
2. Convert the initial temperature to Kelvin:
To use the gas law properly, we need to work in absolute temperatures (Kelvin). We convert the initial temperature from Celsius to Kelvin using the conversion formula:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So,
[tex]\[ T_1 = 115 + 273.15 = 388.15 \text{ K} \][/tex]
3. Apply Charles' Law:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the formula to find the final temperature [tex]\(T_2\)[/tex] we get:
[tex]\[ T_2 = \frac{V_2 \cdot T_1}{V_1} \][/tex]
Substituting the given values:
[tex]\[ T_2 = \frac{400.0 \text{ mL} \cdot 388.15 \text{ K}}{800.0 \text{ mL}} \][/tex]
[tex]\[ T_2 = 194.075 \text{ K} \][/tex]
4. Convert [tex]\(T_2\)[/tex] back to Celsius:
To find the temperature in Celsius, we convert back using:
[tex]\[ T (\text{C}) = T (\text{K}) - 273.15 \][/tex]
Therefore,
[tex]\[ T_2 = 194.075 - 273.15 = -79.075^{\circ} C \][/tex]
The new temperature when the gas volume shrinks to 400.0 mL is [tex]\(-79.08^{\circ} C\)[/tex] (rounded to two decimal places).
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Here, [tex]\(V_1\)[/tex] and [tex]\(T_1\)[/tex] are the initial volume and temperature, and [tex]\(V_2\)[/tex] and [tex]\(T_2\)[/tex] are the final volume and temperature, respectively.
1. Given data:
- Initial volume, [tex]\(V_1 = 800.0\)[/tex] mL
- Initial temperature, [tex]\(T_1 = 115^{\circ} C\)[/tex]
- Final volume, [tex]\(V_2 = 400.0\)[/tex] mL
2. Convert the initial temperature to Kelvin:
To use the gas law properly, we need to work in absolute temperatures (Kelvin). We convert the initial temperature from Celsius to Kelvin using the conversion formula:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So,
[tex]\[ T_1 = 115 + 273.15 = 388.15 \text{ K} \][/tex]
3. Apply Charles' Law:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the formula to find the final temperature [tex]\(T_2\)[/tex] we get:
[tex]\[ T_2 = \frac{V_2 \cdot T_1}{V_1} \][/tex]
Substituting the given values:
[tex]\[ T_2 = \frac{400.0 \text{ mL} \cdot 388.15 \text{ K}}{800.0 \text{ mL}} \][/tex]
[tex]\[ T_2 = 194.075 \text{ K} \][/tex]
4. Convert [tex]\(T_2\)[/tex] back to Celsius:
To find the temperature in Celsius, we convert back using:
[tex]\[ T (\text{C}) = T (\text{K}) - 273.15 \][/tex]
Therefore,
[tex]\[ T_2 = 194.075 - 273.15 = -79.075^{\circ} C \][/tex]
The new temperature when the gas volume shrinks to 400.0 mL is [tex]\(-79.08^{\circ} C\)[/tex] (rounded to two decimal places).
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.