At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we will use the principles of the Ideal Gas Law, specifically Charles' Law, which states that the volume of a gas is directly proportional to its temperature when the pressure and the number of moles remain constant. The formula can be expressed as:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Here, [tex]\(V_1\)[/tex] and [tex]\(T_1\)[/tex] are the initial volume and temperature, and [tex]\(V_2\)[/tex] and [tex]\(T_2\)[/tex] are the final volume and temperature, respectively.
1. Given data:
- Initial volume, [tex]\(V_1 = 800.0\)[/tex] mL
- Initial temperature, [tex]\(T_1 = 115^{\circ} C\)[/tex]
- Final volume, [tex]\(V_2 = 400.0\)[/tex] mL
2. Convert the initial temperature to Kelvin:
To use the gas law properly, we need to work in absolute temperatures (Kelvin). We convert the initial temperature from Celsius to Kelvin using the conversion formula:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So,
[tex]\[ T_1 = 115 + 273.15 = 388.15 \text{ K} \][/tex]
3. Apply Charles' Law:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the formula to find the final temperature [tex]\(T_2\)[/tex] we get:
[tex]\[ T_2 = \frac{V_2 \cdot T_1}{V_1} \][/tex]
Substituting the given values:
[tex]\[ T_2 = \frac{400.0 \text{ mL} \cdot 388.15 \text{ K}}{800.0 \text{ mL}} \][/tex]
[tex]\[ T_2 = 194.075 \text{ K} \][/tex]
4. Convert [tex]\(T_2\)[/tex] back to Celsius:
To find the temperature in Celsius, we convert back using:
[tex]\[ T (\text{C}) = T (\text{K}) - 273.15 \][/tex]
Therefore,
[tex]\[ T_2 = 194.075 - 273.15 = -79.075^{\circ} C \][/tex]
The new temperature when the gas volume shrinks to 400.0 mL is [tex]\(-79.08^{\circ} C\)[/tex] (rounded to two decimal places).
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Here, [tex]\(V_1\)[/tex] and [tex]\(T_1\)[/tex] are the initial volume and temperature, and [tex]\(V_2\)[/tex] and [tex]\(T_2\)[/tex] are the final volume and temperature, respectively.
1. Given data:
- Initial volume, [tex]\(V_1 = 800.0\)[/tex] mL
- Initial temperature, [tex]\(T_1 = 115^{\circ} C\)[/tex]
- Final volume, [tex]\(V_2 = 400.0\)[/tex] mL
2. Convert the initial temperature to Kelvin:
To use the gas law properly, we need to work in absolute temperatures (Kelvin). We convert the initial temperature from Celsius to Kelvin using the conversion formula:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So,
[tex]\[ T_1 = 115 + 273.15 = 388.15 \text{ K} \][/tex]
3. Apply Charles' Law:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the formula to find the final temperature [tex]\(T_2\)[/tex] we get:
[tex]\[ T_2 = \frac{V_2 \cdot T_1}{V_1} \][/tex]
Substituting the given values:
[tex]\[ T_2 = \frac{400.0 \text{ mL} \cdot 388.15 \text{ K}}{800.0 \text{ mL}} \][/tex]
[tex]\[ T_2 = 194.075 \text{ K} \][/tex]
4. Convert [tex]\(T_2\)[/tex] back to Celsius:
To find the temperature in Celsius, we convert back using:
[tex]\[ T (\text{C}) = T (\text{K}) - 273.15 \][/tex]
Therefore,
[tex]\[ T_2 = 194.075 - 273.15 = -79.075^{\circ} C \][/tex]
The new temperature when the gas volume shrinks to 400.0 mL is [tex]\(-79.08^{\circ} C\)[/tex] (rounded to two decimal places).
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.