Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To predict the products of the decomposition reaction for [tex]\(2 \text{LiClO}_3\)[/tex], let's observe the provided reactions and look for patterns:
1. [tex]\(2 \text{NaClO}_3 \rightarrow 2 \text{NaCl} + 3 \text{O}_2\)[/tex]
2. [tex]\(2 \text{KClO}_3 \rightarrow 3 \text{O}_2 + 2 \text{KCl}\)[/tex]
In both examples, the decomposition of the compound follows a pattern where:
- The [tex]\(\text{ClO}_3\)[/tex] splits into [tex]\(\text{Cl}\)[/tex] and [tex]\(\text{O}_2\)[/tex].
- Each decomposition produces 2 moles of the corresponding chloride ([tex]\(\text{NaCl}\)[/tex] or [tex]\(\text{KCl}\)[/tex]).
- Each decomposition also produces 3 moles of [tex]\(\text{O}_2\)[/tex].
Based on the patterns observed:
1. The coefficients [tex]\(2\)[/tex] for [tex]\(\text{NaClO}_3\)[/tex] and [tex]\(\text{KClO}_3\)[/tex] remain consistent before and after the reaction.
2. The products always consist of 2 moles of the metal chloride and 3 moles of [tex]\(\text{O}_2\)[/tex].
Applying this pattern to [tex]\(2 \text{LiClO}_3\)[/tex]:
- The decomposition would produce 2 moles of lithium chloride ([tex]\(\text{LiCl}\)[/tex]).
- The decomposition would also produce 3 moles of oxygen gas ([tex]\(\text{O}_2\)[/tex]).
Thus, the expected products of the decomposition reaction of [tex]\(2 \text{LiClO}_3\)[/tex] are:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
So, Rosa should record the following in the last row of the table:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
This matches the first option provided. Therefore, the correct answer is:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
1. [tex]\(2 \text{NaClO}_3 \rightarrow 2 \text{NaCl} + 3 \text{O}_2\)[/tex]
2. [tex]\(2 \text{KClO}_3 \rightarrow 3 \text{O}_2 + 2 \text{KCl}\)[/tex]
In both examples, the decomposition of the compound follows a pattern where:
- The [tex]\(\text{ClO}_3\)[/tex] splits into [tex]\(\text{Cl}\)[/tex] and [tex]\(\text{O}_2\)[/tex].
- Each decomposition produces 2 moles of the corresponding chloride ([tex]\(\text{NaCl}\)[/tex] or [tex]\(\text{KCl}\)[/tex]).
- Each decomposition also produces 3 moles of [tex]\(\text{O}_2\)[/tex].
Based on the patterns observed:
1. The coefficients [tex]\(2\)[/tex] for [tex]\(\text{NaClO}_3\)[/tex] and [tex]\(\text{KClO}_3\)[/tex] remain consistent before and after the reaction.
2. The products always consist of 2 moles of the metal chloride and 3 moles of [tex]\(\text{O}_2\)[/tex].
Applying this pattern to [tex]\(2 \text{LiClO}_3\)[/tex]:
- The decomposition would produce 2 moles of lithium chloride ([tex]\(\text{LiCl}\)[/tex]).
- The decomposition would also produce 3 moles of oxygen gas ([tex]\(\text{O}_2\)[/tex]).
Thus, the expected products of the decomposition reaction of [tex]\(2 \text{LiClO}_3\)[/tex] are:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
So, Rosa should record the following in the last row of the table:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
This matches the first option provided. Therefore, the correct answer is:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.