Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To predict the products of the decomposition reaction for [tex]\(2 \text{LiClO}_3\)[/tex], let's observe the provided reactions and look for patterns:
1. [tex]\(2 \text{NaClO}_3 \rightarrow 2 \text{NaCl} + 3 \text{O}_2\)[/tex]
2. [tex]\(2 \text{KClO}_3 \rightarrow 3 \text{O}_2 + 2 \text{KCl}\)[/tex]
In both examples, the decomposition of the compound follows a pattern where:
- The [tex]\(\text{ClO}_3\)[/tex] splits into [tex]\(\text{Cl}\)[/tex] and [tex]\(\text{O}_2\)[/tex].
- Each decomposition produces 2 moles of the corresponding chloride ([tex]\(\text{NaCl}\)[/tex] or [tex]\(\text{KCl}\)[/tex]).
- Each decomposition also produces 3 moles of [tex]\(\text{O}_2\)[/tex].
Based on the patterns observed:
1. The coefficients [tex]\(2\)[/tex] for [tex]\(\text{NaClO}_3\)[/tex] and [tex]\(\text{KClO}_3\)[/tex] remain consistent before and after the reaction.
2. The products always consist of 2 moles of the metal chloride and 3 moles of [tex]\(\text{O}_2\)[/tex].
Applying this pattern to [tex]\(2 \text{LiClO}_3\)[/tex]:
- The decomposition would produce 2 moles of lithium chloride ([tex]\(\text{LiCl}\)[/tex]).
- The decomposition would also produce 3 moles of oxygen gas ([tex]\(\text{O}_2\)[/tex]).
Thus, the expected products of the decomposition reaction of [tex]\(2 \text{LiClO}_3\)[/tex] are:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
So, Rosa should record the following in the last row of the table:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
This matches the first option provided. Therefore, the correct answer is:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
1. [tex]\(2 \text{NaClO}_3 \rightarrow 2 \text{NaCl} + 3 \text{O}_2\)[/tex]
2. [tex]\(2 \text{KClO}_3 \rightarrow 3 \text{O}_2 + 2 \text{KCl}\)[/tex]
In both examples, the decomposition of the compound follows a pattern where:
- The [tex]\(\text{ClO}_3\)[/tex] splits into [tex]\(\text{Cl}\)[/tex] and [tex]\(\text{O}_2\)[/tex].
- Each decomposition produces 2 moles of the corresponding chloride ([tex]\(\text{NaCl}\)[/tex] or [tex]\(\text{KCl}\)[/tex]).
- Each decomposition also produces 3 moles of [tex]\(\text{O}_2\)[/tex].
Based on the patterns observed:
1. The coefficients [tex]\(2\)[/tex] for [tex]\(\text{NaClO}_3\)[/tex] and [tex]\(\text{KClO}_3\)[/tex] remain consistent before and after the reaction.
2. The products always consist of 2 moles of the metal chloride and 3 moles of [tex]\(\text{O}_2\)[/tex].
Applying this pattern to [tex]\(2 \text{LiClO}_3\)[/tex]:
- The decomposition would produce 2 moles of lithium chloride ([tex]\(\text{LiCl}\)[/tex]).
- The decomposition would also produce 3 moles of oxygen gas ([tex]\(\text{O}_2\)[/tex]).
Thus, the expected products of the decomposition reaction of [tex]\(2 \text{LiClO}_3\)[/tex] are:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
So, Rosa should record the following in the last row of the table:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
This matches the first option provided. Therefore, the correct answer is:
[tex]\[2 \text{LiCl} + 3 \text{O}_2\][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.