Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let’s analyze the end behavior of the function [tex]\( g(x) = \frac{x^2 + 6x}{30} \)[/tex].
Step-by-Step Analysis:
1. Understanding the Function: We have [tex]\( g(x) = \frac{x^2 + 6x}{30} \)[/tex].
2. Leading Term Dominance: For large values of [tex]\( x \)[/tex] (either very large positive or very large negative), the [tex]\( x^2 \)[/tex] term in the numerator will dominate over the [tex]\( 6x \)[/tex] term since [tex]\( x^2 \)[/tex] grows much faster than [tex]\( x \)[/tex].
3. End Behavior as [tex]\( x \to \infty \)[/tex]:
- As [tex]\( x \)[/tex] becomes very large, [tex]\( x^2 \)[/tex] will dominate, and [tex]\( g(x) \)[/tex] will behave approximately like [tex]\( \frac{x^2}{30} \)[/tex].
- Thus, as [tex]\( x \to \infty \)[/tex], [tex]\( \frac{x^2}{30} \)[/tex] increases without bound.
- Therefore, [tex]\( g(x) \to \infty \)[/tex] as [tex]\( x \to \infty \)[/tex].
4. End Behavior as [tex]\( x \to -\infty \)[/tex]:
- Similarly, for very large negative values of [tex]\( x \)[/tex], [tex]\( x^2 \)[/tex] still dominates because [tex]\( (-x)^2 = x^2 \)[/tex].
- So, [tex]\( g(x) \)[/tex] will again behave like [tex]\( \frac{x^2}{30} \)[/tex].
- Therefore, as [tex]\( x \to -\infty \)[/tex], [tex]\( \frac{x^2}{30} \)[/tex] increases without bound.
- Thus, [tex]\( g(x) \to \infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
From this analysis, we can conclude that as [tex]\( x \)[/tex] approaches either [tex]\( -\infty \)[/tex] or [tex]\( \infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Selecting Correct Statement:
Given these conclusions, the correct statement is:
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex]; and as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
However, this exact match is not provided in the options. The closest option, aligning to our conclusion, is the interpretation of the positive bound behavior:
The closest correct option seems to be:
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex] or [tex]\( \infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Which aligns with one intermediate result as:
So, reflecting on the best available correct behavior:
Correct Answer: As [tex]\( x \)[/tex] approaches [tex]\( -\infty, g(x) \)[/tex] approaches [tex]\( \infty \)[/tex]; and as [tex]\( x \)[/tex] approaches [tex]\( \infty, g(x) approaches \infty \)[/tex].
Step-by-Step Analysis:
1. Understanding the Function: We have [tex]\( g(x) = \frac{x^2 + 6x}{30} \)[/tex].
2. Leading Term Dominance: For large values of [tex]\( x \)[/tex] (either very large positive or very large negative), the [tex]\( x^2 \)[/tex] term in the numerator will dominate over the [tex]\( 6x \)[/tex] term since [tex]\( x^2 \)[/tex] grows much faster than [tex]\( x \)[/tex].
3. End Behavior as [tex]\( x \to \infty \)[/tex]:
- As [tex]\( x \)[/tex] becomes very large, [tex]\( x^2 \)[/tex] will dominate, and [tex]\( g(x) \)[/tex] will behave approximately like [tex]\( \frac{x^2}{30} \)[/tex].
- Thus, as [tex]\( x \to \infty \)[/tex], [tex]\( \frac{x^2}{30} \)[/tex] increases without bound.
- Therefore, [tex]\( g(x) \to \infty \)[/tex] as [tex]\( x \to \infty \)[/tex].
4. End Behavior as [tex]\( x \to -\infty \)[/tex]:
- Similarly, for very large negative values of [tex]\( x \)[/tex], [tex]\( x^2 \)[/tex] still dominates because [tex]\( (-x)^2 = x^2 \)[/tex].
- So, [tex]\( g(x) \)[/tex] will again behave like [tex]\( \frac{x^2}{30} \)[/tex].
- Therefore, as [tex]\( x \to -\infty \)[/tex], [tex]\( \frac{x^2}{30} \)[/tex] increases without bound.
- Thus, [tex]\( g(x) \to \infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
From this analysis, we can conclude that as [tex]\( x \)[/tex] approaches either [tex]\( -\infty \)[/tex] or [tex]\( \infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Selecting Correct Statement:
Given these conclusions, the correct statement is:
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex]; and as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
However, this exact match is not provided in the options. The closest option, aligning to our conclusion, is the interpretation of the positive bound behavior:
The closest correct option seems to be:
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex] or [tex]\( \infty \)[/tex], [tex]\( g(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Which aligns with one intermediate result as:
So, reflecting on the best available correct behavior:
Correct Answer: As [tex]\( x \)[/tex] approaches [tex]\( -\infty, g(x) \)[/tex] approaches [tex]\( \infty \)[/tex]; and as [tex]\( x \)[/tex] approaches [tex]\( \infty, g(x) approaches \infty \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.