Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the problem step by step to find the correct equation of the circle given its center and radius.
1. Identify the given information:
- The center of the circle is [tex]\( T(5, -1) \)[/tex].
- The radius of the circle is 16 units.
2. Recall the standard form of the equation of a circle:
The standard form of a circle's equation with center [tex]\((h,k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
3. Substitute the given center and radius into the standard equation form:
- Given center [tex]\((h,k) = (5, -1)\)[/tex],
- Given radius [tex]\(r = 16\)[/tex],
Substitute [tex]\(h = 5\)[/tex], [tex]\(k = -1\)[/tex], and [tex]\(r = 16\)[/tex] into the standard equation:
[tex]\[ (x - 5)^2 + (y - (-1))^2 = 16^2 \][/tex]
4. Simplify the equation:
- [tex]\(y - (-1)\)[/tex] simplifies to [tex]\(y + 1\)[/tex],
- [tex]\(16^2\)[/tex] calculates to 256.
Therefore, the equation now looks like:
[tex]\[ (x - 5)^2 + (y + 1)^2 = 256 \][/tex]
5. Verify which of the given multiple-choice options matches our derived equation:
- Option A: [tex]\((x - 5)^2 + (y + 1)^2 = 16\)[/tex] [tex]\( \quad \)[/tex] (Incorrect, as the right-hand side should be 256, not 16)
- Option B: [tex]\((x - 5)^2 + (y + 1)^2 = 256\)[/tex] [tex]\( \quad \)[/tex] (Correct, matches our derived equation)
- Option C: [tex]\((x + 5)^2 + (y - 1)^2 = 16\)[/tex] [tex]\( \quad \)[/tex] (Incorrect, as both the signs and the right-hand side values are incorrect)
- Option D: [tex]\((x + 5)^2 + (y - 1)^2 = 256\)[/tex] [tex]\( \quad \)[/tex] (Incorrect, the signs inside the parentheses are incorrect)
Therefore, the correct choice is:
[tex]\[ \boxed{B} \][/tex]
1. Identify the given information:
- The center of the circle is [tex]\( T(5, -1) \)[/tex].
- The radius of the circle is 16 units.
2. Recall the standard form of the equation of a circle:
The standard form of a circle's equation with center [tex]\((h,k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
3. Substitute the given center and radius into the standard equation form:
- Given center [tex]\((h,k) = (5, -1)\)[/tex],
- Given radius [tex]\(r = 16\)[/tex],
Substitute [tex]\(h = 5\)[/tex], [tex]\(k = -1\)[/tex], and [tex]\(r = 16\)[/tex] into the standard equation:
[tex]\[ (x - 5)^2 + (y - (-1))^2 = 16^2 \][/tex]
4. Simplify the equation:
- [tex]\(y - (-1)\)[/tex] simplifies to [tex]\(y + 1\)[/tex],
- [tex]\(16^2\)[/tex] calculates to 256.
Therefore, the equation now looks like:
[tex]\[ (x - 5)^2 + (y + 1)^2 = 256 \][/tex]
5. Verify which of the given multiple-choice options matches our derived equation:
- Option A: [tex]\((x - 5)^2 + (y + 1)^2 = 16\)[/tex] [tex]\( \quad \)[/tex] (Incorrect, as the right-hand side should be 256, not 16)
- Option B: [tex]\((x - 5)^2 + (y + 1)^2 = 256\)[/tex] [tex]\( \quad \)[/tex] (Correct, matches our derived equation)
- Option C: [tex]\((x + 5)^2 + (y - 1)^2 = 16\)[/tex] [tex]\( \quad \)[/tex] (Incorrect, as both the signs and the right-hand side values are incorrect)
- Option D: [tex]\((x + 5)^2 + (y - 1)^2 = 256\)[/tex] [tex]\( \quad \)[/tex] (Incorrect, the signs inside the parentheses are incorrect)
Therefore, the correct choice is:
[tex]\[ \boxed{B} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.