Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which expression is equivalent to [tex]\(\frac{x+3}{x^2-2 x-3} \div \frac{x^2+2 x-3}{x+1}\)[/tex], we will follow the steps of simplifying the given complex fraction.
First, recall the division of fractions rule:
[tex]\[ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} \][/tex]
So we can rewrite the given expression as:
[tex]\[ \frac{x+3}{x^2-2x-3} \div \frac{x^2+2x-3}{x+1} = \frac{x+3}{x^2-2x-3} \times \frac{x+1}{x^2+2x-3} \][/tex]
Next, let's factorize the quadratic expressions in the denominators and numerators where possible.
1. Factorize [tex]\(x^2-2x-3\)[/tex]:
[tex]\[ x^2-2x-3 = (x-3)(x+1) \][/tex]
2. Factorize [tex]\(x^2+2x-3\)[/tex]:
[tex]\[ x^2+2x-3 = (x+3)(x-1) \][/tex]
Substituting these factorizations into the expression, we get:
[tex]\[ \frac{x+3}{(x-3)(x+1)} \times \frac{x+1}{(x+3)(x-1)} \][/tex]
We can now cancel the common factors in the numerator and the denominator:
- The factor [tex]\(x+3\)[/tex] in the numerator of the first fraction and in the denominator of the second fraction cancels out.
- The factor [tex]\(x+1\)[/tex] in the numerator of the second fraction and in the denominator of the first fraction cancels out.
This simplifies to:
[tex]\[ \frac{1}{(x-3)(x-1)} \][/tex]
Combining the remaining factors in the denominator, we get:
[tex]\[ \frac{1}{x^2 - 4x + 3} \][/tex]
Therefore, the expression simplifies to [tex]\(\frac{1}{x^2 - 4x + 3}\)[/tex]. Looking at the given options, we find that:
B. [tex]\(\frac{1}{x^2-4x+3}\)[/tex]
is the correct answer.
First, recall the division of fractions rule:
[tex]\[ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} \][/tex]
So we can rewrite the given expression as:
[tex]\[ \frac{x+3}{x^2-2x-3} \div \frac{x^2+2x-3}{x+1} = \frac{x+3}{x^2-2x-3} \times \frac{x+1}{x^2+2x-3} \][/tex]
Next, let's factorize the quadratic expressions in the denominators and numerators where possible.
1. Factorize [tex]\(x^2-2x-3\)[/tex]:
[tex]\[ x^2-2x-3 = (x-3)(x+1) \][/tex]
2. Factorize [tex]\(x^2+2x-3\)[/tex]:
[tex]\[ x^2+2x-3 = (x+3)(x-1) \][/tex]
Substituting these factorizations into the expression, we get:
[tex]\[ \frac{x+3}{(x-3)(x+1)} \times \frac{x+1}{(x+3)(x-1)} \][/tex]
We can now cancel the common factors in the numerator and the denominator:
- The factor [tex]\(x+3\)[/tex] in the numerator of the first fraction and in the denominator of the second fraction cancels out.
- The factor [tex]\(x+1\)[/tex] in the numerator of the second fraction and in the denominator of the first fraction cancels out.
This simplifies to:
[tex]\[ \frac{1}{(x-3)(x-1)} \][/tex]
Combining the remaining factors in the denominator, we get:
[tex]\[ \frac{1}{x^2 - 4x + 3} \][/tex]
Therefore, the expression simplifies to [tex]\(\frac{1}{x^2 - 4x + 3}\)[/tex]. Looking at the given options, we find that:
B. [tex]\(\frac{1}{x^2-4x+3}\)[/tex]
is the correct answer.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.