Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's go through this step-by-step and determine the fractions for each phenotype.
### Step 1: Parent Genotypes
- Parent 1 genotypes: bbee (homozygous recessive for both traits)
- Parent 2 genotypes: BbEe (dihybrid)
### Step 2: Gametes
- Parent 1 can produce gametes: be
- Parent 2 can produce gametes: BE, Be, bE, be
### Step 3: Punnett Square
We create a Punnett square using the gametes from each parent. The gametes from Parent 1 will be along one axis (here, it produces only 'be'), and the gametes from Parent 2 will be along the other axis.
| | BE | Be | bE | be |
|-------|----|----|----|----|
| be| BbeE | Bbee | bbeE | bbee |
Let's list out each genotype and their corresponding phenotypes:
1. BbEe: Black Fur and Black Eyes
2. Bbee: Black Fur and Red Eyes
3. bbEe: White Fur and Black Eyes
4. bbee: White Fur and Red Eyes
### Step 4: Offspring Genotype and Phenotype
Considering that there are equal chances of forming each combination from the Punnett square, we can now determine the frequency of each phenotype:
1. BbEe: 4 out of 16 (Black Fur and Black Eyes)
2. Bbee: 4 out of 16 (Black Fur and Red Eyes)
3. bbEe: 4 out of 16 (White Fur and Black Eyes)
4. bbee: 4 out of 16 (White Fur and Red Eyes)
### Step 5: Predicted Fraction
We now summarize this information in a table:
[tex]\[ \begin{tabular}{||c||c|c|c|c|} \hline \hline & \begin{tabular}{c} Black \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} Black \\ Fur and \\ Red \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Red \\ Eyes \end{tabular} \\ \hline \begin{tabular}{c} Predicted \\ Fraction \end{tabular} & \frac{4}{16} & \frac{4}{16} & \frac{4}{16} & \frac{4}{16} \\ \hline \hline \end{tabular} \][/tex]
Simplified, each fraction becomes:
[tex]\[ \begin{tabular}{||c||c|c|c|c|} \hline \hline & \begin{tabular}{c} Black \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} Black \\ Fur and \\ Red \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Red \\ Eyes \end{tabular} \\ \hline \begin{tabular}{c} Predicted \\ Fraction \end{tabular} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \hline \hline \end{tabular} \][/tex]
Thus, the predicted fractions of each phenotype are:
- 1/4 for Black Fur and Black Eyes
- 1/4 for Black Fur and Red Eyes
- 1/4 for White Fur and Black Eyes
- 1/4 for White Fur and Red Eyes
### Step 1: Parent Genotypes
- Parent 1 genotypes: bbee (homozygous recessive for both traits)
- Parent 2 genotypes: BbEe (dihybrid)
### Step 2: Gametes
- Parent 1 can produce gametes: be
- Parent 2 can produce gametes: BE, Be, bE, be
### Step 3: Punnett Square
We create a Punnett square using the gametes from each parent. The gametes from Parent 1 will be along one axis (here, it produces only 'be'), and the gametes from Parent 2 will be along the other axis.
| | BE | Be | bE | be |
|-------|----|----|----|----|
| be| BbeE | Bbee | bbeE | bbee |
Let's list out each genotype and their corresponding phenotypes:
1. BbEe: Black Fur and Black Eyes
2. Bbee: Black Fur and Red Eyes
3. bbEe: White Fur and Black Eyes
4. bbee: White Fur and Red Eyes
### Step 4: Offspring Genotype and Phenotype
Considering that there are equal chances of forming each combination from the Punnett square, we can now determine the frequency of each phenotype:
1. BbEe: 4 out of 16 (Black Fur and Black Eyes)
2. Bbee: 4 out of 16 (Black Fur and Red Eyes)
3. bbEe: 4 out of 16 (White Fur and Black Eyes)
4. bbee: 4 out of 16 (White Fur and Red Eyes)
### Step 5: Predicted Fraction
We now summarize this information in a table:
[tex]\[ \begin{tabular}{||c||c|c|c|c|} \hline \hline & \begin{tabular}{c} Black \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} Black \\ Fur and \\ Red \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Red \\ Eyes \end{tabular} \\ \hline \begin{tabular}{c} Predicted \\ Fraction \end{tabular} & \frac{4}{16} & \frac{4}{16} & \frac{4}{16} & \frac{4}{16} \\ \hline \hline \end{tabular} \][/tex]
Simplified, each fraction becomes:
[tex]\[ \begin{tabular}{||c||c|c|c|c|} \hline \hline & \begin{tabular}{c} Black \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} Black \\ Fur and \\ Red \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Black \\ Eyes \end{tabular} & \begin{tabular}{c} White \\ Fur and \\ Red \\ Eyes \end{tabular} \\ \hline \begin{tabular}{c} Predicted \\ Fraction \end{tabular} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \hline \hline \end{tabular} \][/tex]
Thus, the predicted fractions of each phenotype are:
- 1/4 for Black Fur and Black Eyes
- 1/4 for Black Fur and Red Eyes
- 1/4 for White Fur and Black Eyes
- 1/4 for White Fur and Red Eyes
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.