Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Question 3 (Essay Worth 10 points)

A point [tex]\( T \)[/tex] on a segment with endpoints [tex]\( D (1,4) \)[/tex] and [tex]\( F (7,1) \)[/tex] partitions the segment in a [tex]\( 3:1 \)[/tex] ratio. Find [tex]\( T \)[/tex]. You must show all work to receive credit.

Sagot :

To solve the problem of finding the point [tex]\( T \)[/tex] that partitions the segment with endpoints [tex]\( D(1, 4) \)[/tex] and [tex]\( F(7, 1) \)[/tex] in a [tex]\( 3:1 \)[/tex] ratio, we will use the section formula for internal division of a line segment in a given ratio.

The section formula states that if a point [tex]\( T \)[/tex] divides the line segment joining two points [tex]\( D(x_1, y_1) \)[/tex] and [tex]\( F(x_2, y_2) \)[/tex] in the ratio [tex]\( m:n \)[/tex], then the coordinates of [tex]\( T \)[/tex] are given by:

[tex]\[ T_x = \frac{m \cdot x_2 + n \cdot x_1}{m+n} \][/tex]
[tex]\[ T_y = \frac{m \cdot y_2 + n \cdot y_1}{m+n} \][/tex]

Given:
- [tex]\( D(1, 4) \)[/tex] implies [tex]\( x_1 = 1 \)[/tex], [tex]\( y_1 = 4 \)[/tex]
- [tex]\( F(7, 1) \)[/tex] implies [tex]\( x_2 = 7 \)[/tex], [tex]\( y_2 = 1 \)[/tex]
- The ratio is [tex]\( m:n = 3:1 \)[/tex], which means [tex]\( m = 3 \)[/tex] and [tex]\( n = 1 \)[/tex]

First, we will find the x-coordinate of point [tex]\( T \)[/tex]:

[tex]\[ T_x = \frac{3 \cdot 7 + 1 \cdot 1}{3+1} \][/tex]
[tex]\[ T_x = \frac{21 + 1}{4} \][/tex]
[tex]\[ T_x = \frac{22}{4} \][/tex]
[tex]\[ T_x = 5.5 \][/tex]

Next, we calculate the y-coordinate of point [tex]\( T \)[/tex]:

[tex]\[ T_y = \frac{3 \cdot 1 + 1 \cdot 4}{3+1} \][/tex]
[tex]\[ T_y = \frac{3 + 4}{4} \][/tex]
[tex]\[ T_y = \frac{7}{4} \][/tex]
[tex]\[ T_y = 1.75 \][/tex]

Thus, the coordinates of point [tex]\( T \)[/tex] that partitions the segment joining [tex]\( D(1, 4) \)[/tex] and [tex]\( F(7, 1) \)[/tex] in a [tex]\( 3:1 \)[/tex] ratio are:

[tex]\[ T = (5.5, 1.75) \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.