Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To analyze the end behavior of the function [tex]\( f(x) = -4x^6 + 6x^2 - 52 \)[/tex], we need to consider two main aspects: the degree of the polynomial and the leading coefficient.
### Step-by-Step Solution:
1. Identify the Leading Term:
The leading term of a polynomial is the term with the highest power of [tex]\( x \)[/tex]. For [tex]\( f(x) = -4x^6 + 6x^2 - 52 \)[/tex], the leading term is [tex]\( -4x^6 \)[/tex].
2. Determine the Leading Coefficient:
The leading coefficient is the coefficient of the leading term. In this case, the coefficient of [tex]\( -4x^6 \)[/tex] is [tex]\(-4\)[/tex].
3. Degree of the Polynomial:
The degree of a polynomial is the highest exponent on the variable [tex]\( x \)[/tex]. Here, the degree is [tex]\( 6 \)[/tex].
4. Analyze the Degree and Leading Coefficient:
- The degree of the polynomial is [tex]\( 6 \)[/tex], which is an even number.
- The leading coefficient is [tex]\(-4\)[/tex], which is a negative number.
5. End Behavior Rules:
- For polynomials with an even degree:
- If the leading coefficient is positive, both ends of the graph will go upwards.
- If the leading coefficient is negative, both ends of the graph will go downwards.
6. Conclusion:
Because the degree of the polynomial [tex]\( f(x) = -4x^6 + 6x^2 - 52 \)[/tex] is even, and the leading coefficient [tex]\( -4 \)[/tex] is negative, both ends of the graph will go downwards.
### Final Answer:
D. [tex]\( f(x) \)[/tex] is an even function so both ends of the graph go in the same direction.
### Step-by-Step Solution:
1. Identify the Leading Term:
The leading term of a polynomial is the term with the highest power of [tex]\( x \)[/tex]. For [tex]\( f(x) = -4x^6 + 6x^2 - 52 \)[/tex], the leading term is [tex]\( -4x^6 \)[/tex].
2. Determine the Leading Coefficient:
The leading coefficient is the coefficient of the leading term. In this case, the coefficient of [tex]\( -4x^6 \)[/tex] is [tex]\(-4\)[/tex].
3. Degree of the Polynomial:
The degree of a polynomial is the highest exponent on the variable [tex]\( x \)[/tex]. Here, the degree is [tex]\( 6 \)[/tex].
4. Analyze the Degree and Leading Coefficient:
- The degree of the polynomial is [tex]\( 6 \)[/tex], which is an even number.
- The leading coefficient is [tex]\(-4\)[/tex], which is a negative number.
5. End Behavior Rules:
- For polynomials with an even degree:
- If the leading coefficient is positive, both ends of the graph will go upwards.
- If the leading coefficient is negative, both ends of the graph will go downwards.
6. Conclusion:
Because the degree of the polynomial [tex]\( f(x) = -4x^6 + 6x^2 - 52 \)[/tex] is even, and the leading coefficient [tex]\( -4 \)[/tex] is negative, both ends of the graph will go downwards.
### Final Answer:
D. [tex]\( f(x) \)[/tex] is an even function so both ends of the graph go in the same direction.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.