At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex], we use the slope formula for a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the coordinates:
[tex]\[ (x_1, y_1) = (-3, 3) \][/tex]
[tex]\[ (x_2, y_2) = (18, 26) \][/tex]
Plugging these values into the slope formula:
[tex]\[ \text{slope} = \frac{26 - 3}{18 - (-3)} \][/tex]
[tex]\[ \text{slope} = \frac{26 - 3}{18 + 3} \][/tex]
[tex]\[ \text{slope} = \frac{23}{21} \][/tex]
So, the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex] is
[tex]\[ \boxed{\frac{23}{21}} \][/tex]
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the coordinates:
[tex]\[ (x_1, y_1) = (-3, 3) \][/tex]
[tex]\[ (x_2, y_2) = (18, 26) \][/tex]
Plugging these values into the slope formula:
[tex]\[ \text{slope} = \frac{26 - 3}{18 - (-3)} \][/tex]
[tex]\[ \text{slope} = \frac{26 - 3}{18 + 3} \][/tex]
[tex]\[ \text{slope} = \frac{23}{21} \][/tex]
So, the slope of the trend line that passes through the points [tex]\((-3, 3)\)[/tex] and [tex]\((18, 26)\)[/tex] is
[tex]\[ \boxed{\frac{23}{21}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.