Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Simplify.

[tex]\[ \frac{\sec^2 x - 1}{\tan^2 x} \][/tex]


Sagot :

To simplify the expression

[tex]\[ \frac{\sec^2(x) - 1}{\tan^2(x)}, \][/tex]

we can use some fundamental trigonometric identities. Here's a step-by-step breakdown:

1. Identify the trigonometric identity:

Recall the Pythagorean identity:

[tex]\[ \sec^2(x) = 1 + \tan^2(x) \][/tex]

2. Substitute into the given expression:

We can now substitute [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex] into the expression:

[tex]\[ \sec^2(x) - 1 = (1 + \tan^2(x)) - 1 \][/tex]

3. Simplify the numerator:

[tex]\[ \sec^2(x) - 1 = \tan^2(x) \][/tex]

4. Rewrite the original expression:

Substitute [tex]\( \tan^2(x) \)[/tex] for [tex]\( \sec^2(x) - 1 \)[/tex] in the numerator:

[tex]\[ \frac{\sec^2(x) - 1}{\tan^2(x)} = \frac{\tan^2(x)}{\tan^2(x)} \][/tex]

5. Simplify the fraction:

Since the numerator and the denominator are the same, the fraction simplifies to 1:

[tex]\[ \frac{\tan^2(x)}{\tan^2(x)} = 1 \][/tex]

Thus, the simplified form of the given expression is:

[tex]\[ \boxed{1} \][/tex]