Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's identify the missing combinations of three different scoops of gelato from the following list:
1. Hazelnut (H)
2. Chocolate (C)
3. Tiramisu (T)
4. Pistachio (P)
5. Strawberry (S)
First, we list all possible combinations of choosing 3 scoops out of 5 flavors. There are combinatorial ways to do this. Specifically, the number of combinations is calculated by the combination formula [tex]\( \binom{n}{k} \)[/tex] , where [tex]\( n \)[/tex] is the total number of items and [tex]\( k \)[/tex] is the number of items to choose. Here, [tex]\( n = 5 \)[/tex] and [tex]\( k = 3 \)[/tex]:
[tex]\[ \binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5 \times 4}{2 \times 1} = 10 \][/tex]
So, there are 10 possible combinations. Let's list them:
1. H - C - T
2. H - C - S
3. H - T - S
4. C - T - P
5. C - P - S
6. H - C - P
7. H - P - S
8. T - P - S
9. H - T - P
10. C - T - S
Next, we cross-check each of these combinations with the given list to find the missing ones:
| Given List | Found in Complete List? |
|-------------------------|-------------------------|
| H - C - T | Yes |
| H - C - S | Yes |
| H - T - S | Yes |
| C - T - P | Yes |
| C - P - S | Yes |
| H - C - P | Yes |
| ? (First missing) | No |
| H - P - S | Yes |
| ? (Second missing) | No |
| T - P - S | Yes |
By comparing the lists, we determine that the missing combinations in the table are:
For the first missing:
- H - T - P
For the second missing:
- C - T - S
Hence, the complete list with missing combinations filled in would be:
[tex]\[ \begin{tabular}{|ccccc|} \hline H - C - T & H - C - S & H - T - S & C-T-P & C-P-S \\ H - C - P & H - T - P & H - P - S & C - T - S & T-P-S \\ \hline \end{tabular} \][/tex]
The two missing answers from the given options are:
A. H - T - P
B. C - T - S
1. Hazelnut (H)
2. Chocolate (C)
3. Tiramisu (T)
4. Pistachio (P)
5. Strawberry (S)
First, we list all possible combinations of choosing 3 scoops out of 5 flavors. There are combinatorial ways to do this. Specifically, the number of combinations is calculated by the combination formula [tex]\( \binom{n}{k} \)[/tex] , where [tex]\( n \)[/tex] is the total number of items and [tex]\( k \)[/tex] is the number of items to choose. Here, [tex]\( n = 5 \)[/tex] and [tex]\( k = 3 \)[/tex]:
[tex]\[ \binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5 \times 4}{2 \times 1} = 10 \][/tex]
So, there are 10 possible combinations. Let's list them:
1. H - C - T
2. H - C - S
3. H - T - S
4. C - T - P
5. C - P - S
6. H - C - P
7. H - P - S
8. T - P - S
9. H - T - P
10. C - T - S
Next, we cross-check each of these combinations with the given list to find the missing ones:
| Given List | Found in Complete List? |
|-------------------------|-------------------------|
| H - C - T | Yes |
| H - C - S | Yes |
| H - T - S | Yes |
| C - T - P | Yes |
| C - P - S | Yes |
| H - C - P | Yes |
| ? (First missing) | No |
| H - P - S | Yes |
| ? (Second missing) | No |
| T - P - S | Yes |
By comparing the lists, we determine that the missing combinations in the table are:
For the first missing:
- H - T - P
For the second missing:
- C - T - S
Hence, the complete list with missing combinations filled in would be:
[tex]\[ \begin{tabular}{|ccccc|} \hline H - C - T & H - C - S & H - T - S & C-T-P & C-P-S \\ H - C - P & H - T - P & H - P - S & C - T - S & T-P-S \\ \hline \end{tabular} \][/tex]
The two missing answers from the given options are:
A. H - T - P
B. C - T - S
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.