Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To simplify the expression:
[tex]\[ \sin x + \cos x \cot x \][/tex]
we start by recalling the definition of the cotangent function in terms of sine and cosine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
Next, we substitute [tex]\(\cot x\)[/tex] with [tex]\(\frac{\cos x}{\sin x}\)[/tex] in the original expression:
[tex]\[ \sin x + \cos x \cot x = \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) \][/tex]
Simplifying inside the parentheses, we get:
[tex]\[ \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) = \sin x + \frac{\cos^2 x}{\sin x} \][/tex]
To combine these terms, we need a common denominator. The common denominator is [tex]\(\sin x\)[/tex], so we rewrite the first term with this common denominator:
[tex]\[ \sin x = \frac{\sin^2 x}{\sin x} \][/tex]
Now our expression looks like this:
[tex]\[ \frac{\sin^2 x}{\sin x} + \frac{\cos^2 x}{\sin x} \][/tex]
Since the denominators are the same, we can combine the numerators over this common denominator:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\sin x} \][/tex]
We use the Pythagorean identity, which states that:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Therefore, our expression simplifies to:
[tex]\[ \frac{1}{\sin x} \][/tex]
Thus, we recognize that [tex]\(\frac{1}{\sin x}\)[/tex] is the definition of the cosecant function:
[tex]\[ \csc x \][/tex]
So the simplified expression is:
[tex]\[ \sin x + \cos x \cot x = \csc x \][/tex]
[tex]\[ \sin x + \cos x \cot x \][/tex]
we start by recalling the definition of the cotangent function in terms of sine and cosine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
Next, we substitute [tex]\(\cot x\)[/tex] with [tex]\(\frac{\cos x}{\sin x}\)[/tex] in the original expression:
[tex]\[ \sin x + \cos x \cot x = \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) \][/tex]
Simplifying inside the parentheses, we get:
[tex]\[ \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) = \sin x + \frac{\cos^2 x}{\sin x} \][/tex]
To combine these terms, we need a common denominator. The common denominator is [tex]\(\sin x\)[/tex], so we rewrite the first term with this common denominator:
[tex]\[ \sin x = \frac{\sin^2 x}{\sin x} \][/tex]
Now our expression looks like this:
[tex]\[ \frac{\sin^2 x}{\sin x} + \frac{\cos^2 x}{\sin x} \][/tex]
Since the denominators are the same, we can combine the numerators over this common denominator:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\sin x} \][/tex]
We use the Pythagorean identity, which states that:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Therefore, our expression simplifies to:
[tex]\[ \frac{1}{\sin x} \][/tex]
Thus, we recognize that [tex]\(\frac{1}{\sin x}\)[/tex] is the definition of the cosecant function:
[tex]\[ \csc x \][/tex]
So the simplified expression is:
[tex]\[ \sin x + \cos x \cot x = \csc x \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.