At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To simplify the expression:
[tex]\[ \sin x + \cos x \cot x \][/tex]
we start by recalling the definition of the cotangent function in terms of sine and cosine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
Next, we substitute [tex]\(\cot x\)[/tex] with [tex]\(\frac{\cos x}{\sin x}\)[/tex] in the original expression:
[tex]\[ \sin x + \cos x \cot x = \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) \][/tex]
Simplifying inside the parentheses, we get:
[tex]\[ \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) = \sin x + \frac{\cos^2 x}{\sin x} \][/tex]
To combine these terms, we need a common denominator. The common denominator is [tex]\(\sin x\)[/tex], so we rewrite the first term with this common denominator:
[tex]\[ \sin x = \frac{\sin^2 x}{\sin x} \][/tex]
Now our expression looks like this:
[tex]\[ \frac{\sin^2 x}{\sin x} + \frac{\cos^2 x}{\sin x} \][/tex]
Since the denominators are the same, we can combine the numerators over this common denominator:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\sin x} \][/tex]
We use the Pythagorean identity, which states that:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Therefore, our expression simplifies to:
[tex]\[ \frac{1}{\sin x} \][/tex]
Thus, we recognize that [tex]\(\frac{1}{\sin x}\)[/tex] is the definition of the cosecant function:
[tex]\[ \csc x \][/tex]
So the simplified expression is:
[tex]\[ \sin x + \cos x \cot x = \csc x \][/tex]
[tex]\[ \sin x + \cos x \cot x \][/tex]
we start by recalling the definition of the cotangent function in terms of sine and cosine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
Next, we substitute [tex]\(\cot x\)[/tex] with [tex]\(\frac{\cos x}{\sin x}\)[/tex] in the original expression:
[tex]\[ \sin x + \cos x \cot x = \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) \][/tex]
Simplifying inside the parentheses, we get:
[tex]\[ \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) = \sin x + \frac{\cos^2 x}{\sin x} \][/tex]
To combine these terms, we need a common denominator. The common denominator is [tex]\(\sin x\)[/tex], so we rewrite the first term with this common denominator:
[tex]\[ \sin x = \frac{\sin^2 x}{\sin x} \][/tex]
Now our expression looks like this:
[tex]\[ \frac{\sin^2 x}{\sin x} + \frac{\cos^2 x}{\sin x} \][/tex]
Since the denominators are the same, we can combine the numerators over this common denominator:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\sin x} \][/tex]
We use the Pythagorean identity, which states that:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Therefore, our expression simplifies to:
[tex]\[ \frac{1}{\sin x} \][/tex]
Thus, we recognize that [tex]\(\frac{1}{\sin x}\)[/tex] is the definition of the cosecant function:
[tex]\[ \csc x \][/tex]
So the simplified expression is:
[tex]\[ \sin x + \cos x \cot x = \csc x \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.