At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the expression:
[tex]\[ \sin x + \cos x \cot x \][/tex]
we start by recalling the definition of the cotangent function in terms of sine and cosine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
Next, we substitute [tex]\(\cot x\)[/tex] with [tex]\(\frac{\cos x}{\sin x}\)[/tex] in the original expression:
[tex]\[ \sin x + \cos x \cot x = \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) \][/tex]
Simplifying inside the parentheses, we get:
[tex]\[ \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) = \sin x + \frac{\cos^2 x}{\sin x} \][/tex]
To combine these terms, we need a common denominator. The common denominator is [tex]\(\sin x\)[/tex], so we rewrite the first term with this common denominator:
[tex]\[ \sin x = \frac{\sin^2 x}{\sin x} \][/tex]
Now our expression looks like this:
[tex]\[ \frac{\sin^2 x}{\sin x} + \frac{\cos^2 x}{\sin x} \][/tex]
Since the denominators are the same, we can combine the numerators over this common denominator:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\sin x} \][/tex]
We use the Pythagorean identity, which states that:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Therefore, our expression simplifies to:
[tex]\[ \frac{1}{\sin x} \][/tex]
Thus, we recognize that [tex]\(\frac{1}{\sin x}\)[/tex] is the definition of the cosecant function:
[tex]\[ \csc x \][/tex]
So the simplified expression is:
[tex]\[ \sin x + \cos x \cot x = \csc x \][/tex]
[tex]\[ \sin x + \cos x \cot x \][/tex]
we start by recalling the definition of the cotangent function in terms of sine and cosine:
[tex]\[ \cot x = \frac{\cos x}{\sin x} \][/tex]
Next, we substitute [tex]\(\cot x\)[/tex] with [tex]\(\frac{\cos x}{\sin x}\)[/tex] in the original expression:
[tex]\[ \sin x + \cos x \cot x = \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) \][/tex]
Simplifying inside the parentheses, we get:
[tex]\[ \sin x + \cos x \left(\frac{\cos x}{\sin x}\right) = \sin x + \frac{\cos^2 x}{\sin x} \][/tex]
To combine these terms, we need a common denominator. The common denominator is [tex]\(\sin x\)[/tex], so we rewrite the first term with this common denominator:
[tex]\[ \sin x = \frac{\sin^2 x}{\sin x} \][/tex]
Now our expression looks like this:
[tex]\[ \frac{\sin^2 x}{\sin x} + \frac{\cos^2 x}{\sin x} \][/tex]
Since the denominators are the same, we can combine the numerators over this common denominator:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\sin x} \][/tex]
We use the Pythagorean identity, which states that:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Therefore, our expression simplifies to:
[tex]\[ \frac{1}{\sin x} \][/tex]
Thus, we recognize that [tex]\(\frac{1}{\sin x}\)[/tex] is the definition of the cosecant function:
[tex]\[ \csc x \][/tex]
So the simplified expression is:
[tex]\[ \sin x + \cos x \cot x = \csc x \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.