Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which option is a factor of the given expression [tex]\(5z^4 - 3 + 8(y^3 + 10)\)[/tex], let's start by understanding what a factor is. A factor of an expression is a term that, when multiplied by another term, gives the original expression or part of the expression.
Let's examine the given expression and the options:
Expression:
[tex]\[5z^4 - 3 + 8(y^3 + 10)\][/tex]
### Option A: [tex]\(\left(y^3 + 10\right)\)[/tex]
We need to check if [tex]\(\left(y^3 + 10\right)\)[/tex] is a factor. If we consider [tex]\(\left(y^3 + 10\right)\)[/tex], multiplying it by 8 yields [tex]\(8(y^3 + 10)\)[/tex], which is part of our original expression.
### Option B: [tex]\(8\left(y^3 + 10\right)\)[/tex]
This means multiplying the factor [tex]\(\left(y^3 + 10\right)\)[/tex] by 8, which directly gives the term [tex]\(8(y^3 + 10)\)[/tex] in the expression.
### Option C: [tex]\(-3 + 8\left(y^3 + 10\right)\)[/tex]
Let's check if [tex]\(-3 + 8(y^3 + 10)\)[/tex] is a factor. The term [tex]\(-3 + 8(y^3 + 10)\)[/tex] cannot be exactly factored out from the entire expression as it includes additional constants and multiplications.
### Option D: [tex]\(5z^4 - 3\)[/tex]
Checking [tex]\(5z^4 - 3\)[/tex], we observe that this term is part of the original expression, but it does not appear to be a standalone factor that can be multiplied with another term to get the entire original expression.
By analyzing all the terms and options carefully, the factor in the original given expression [tex]\(5z^4 - 3 + 8(y^3 + 10)\)[/tex] is clearly:
### Answer:
B. [tex]\(8\left(y^3 + 10\right)\)[/tex]
Let's examine the given expression and the options:
Expression:
[tex]\[5z^4 - 3 + 8(y^3 + 10)\][/tex]
### Option A: [tex]\(\left(y^3 + 10\right)\)[/tex]
We need to check if [tex]\(\left(y^3 + 10\right)\)[/tex] is a factor. If we consider [tex]\(\left(y^3 + 10\right)\)[/tex], multiplying it by 8 yields [tex]\(8(y^3 + 10)\)[/tex], which is part of our original expression.
### Option B: [tex]\(8\left(y^3 + 10\right)\)[/tex]
This means multiplying the factor [tex]\(\left(y^3 + 10\right)\)[/tex] by 8, which directly gives the term [tex]\(8(y^3 + 10)\)[/tex] in the expression.
### Option C: [tex]\(-3 + 8\left(y^3 + 10\right)\)[/tex]
Let's check if [tex]\(-3 + 8(y^3 + 10)\)[/tex] is a factor. The term [tex]\(-3 + 8(y^3 + 10)\)[/tex] cannot be exactly factored out from the entire expression as it includes additional constants and multiplications.
### Option D: [tex]\(5z^4 - 3\)[/tex]
Checking [tex]\(5z^4 - 3\)[/tex], we observe that this term is part of the original expression, but it does not appear to be a standalone factor that can be multiplied with another term to get the entire original expression.
By analyzing all the terms and options carefully, the factor in the original given expression [tex]\(5z^4 - 3 + 8(y^3 + 10)\)[/tex] is clearly:
### Answer:
B. [tex]\(8\left(y^3 + 10\right)\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.