Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which option is a factor of the given expression [tex]\(5z^4 - 3 + 8(y^3 + 10)\)[/tex], let's start by understanding what a factor is. A factor of an expression is a term that, when multiplied by another term, gives the original expression or part of the expression.
Let's examine the given expression and the options:
Expression:
[tex]\[5z^4 - 3 + 8(y^3 + 10)\][/tex]
### Option A: [tex]\(\left(y^3 + 10\right)\)[/tex]
We need to check if [tex]\(\left(y^3 + 10\right)\)[/tex] is a factor. If we consider [tex]\(\left(y^3 + 10\right)\)[/tex], multiplying it by 8 yields [tex]\(8(y^3 + 10)\)[/tex], which is part of our original expression.
### Option B: [tex]\(8\left(y^3 + 10\right)\)[/tex]
This means multiplying the factor [tex]\(\left(y^3 + 10\right)\)[/tex] by 8, which directly gives the term [tex]\(8(y^3 + 10)\)[/tex] in the expression.
### Option C: [tex]\(-3 + 8\left(y^3 + 10\right)\)[/tex]
Let's check if [tex]\(-3 + 8(y^3 + 10)\)[/tex] is a factor. The term [tex]\(-3 + 8(y^3 + 10)\)[/tex] cannot be exactly factored out from the entire expression as it includes additional constants and multiplications.
### Option D: [tex]\(5z^4 - 3\)[/tex]
Checking [tex]\(5z^4 - 3\)[/tex], we observe that this term is part of the original expression, but it does not appear to be a standalone factor that can be multiplied with another term to get the entire original expression.
By analyzing all the terms and options carefully, the factor in the original given expression [tex]\(5z^4 - 3 + 8(y^3 + 10)\)[/tex] is clearly:
### Answer:
B. [tex]\(8\left(y^3 + 10\right)\)[/tex]
Let's examine the given expression and the options:
Expression:
[tex]\[5z^4 - 3 + 8(y^3 + 10)\][/tex]
### Option A: [tex]\(\left(y^3 + 10\right)\)[/tex]
We need to check if [tex]\(\left(y^3 + 10\right)\)[/tex] is a factor. If we consider [tex]\(\left(y^3 + 10\right)\)[/tex], multiplying it by 8 yields [tex]\(8(y^3 + 10)\)[/tex], which is part of our original expression.
### Option B: [tex]\(8\left(y^3 + 10\right)\)[/tex]
This means multiplying the factor [tex]\(\left(y^3 + 10\right)\)[/tex] by 8, which directly gives the term [tex]\(8(y^3 + 10)\)[/tex] in the expression.
### Option C: [tex]\(-3 + 8\left(y^3 + 10\right)\)[/tex]
Let's check if [tex]\(-3 + 8(y^3 + 10)\)[/tex] is a factor. The term [tex]\(-3 + 8(y^3 + 10)\)[/tex] cannot be exactly factored out from the entire expression as it includes additional constants and multiplications.
### Option D: [tex]\(5z^4 - 3\)[/tex]
Checking [tex]\(5z^4 - 3\)[/tex], we observe that this term is part of the original expression, but it does not appear to be a standalone factor that can be multiplied with another term to get the entire original expression.
By analyzing all the terms and options carefully, the factor in the original given expression [tex]\(5z^4 - 3 + 8(y^3 + 10)\)[/tex] is clearly:
### Answer:
B. [tex]\(8\left(y^3 + 10\right)\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.