Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation, we will iterate our initial guess through the function [tex]\( f(x) \)[/tex]. The initial guess is determined from the intersection point's approximate location on the graph.
Given the functions:
[tex]\[ f(x) = \frac{x^2 + 3x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{x} \][/tex]
Starting with the initial guess [tex]\( x_0 = 1.5 \)[/tex]:
1. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.5) = \frac{(1.5)^2 + 3 \cdot 1.5 + 2}{1.5 + 8} = \frac{2.25 + 4.5 + 2}{9.5} = \frac{8.75}{9.5} \approx 0.921 \][/tex]
(The value is approximate for this calculation to aid understanding).
Next, use this as the new input to the function [tex]\( f \)[/tex]:
2. Calculate [tex]\( f(0.921) \)[/tex]:
[tex]\[ f(0.921) = \frac{(0.921)^2 + 3 \cdot 0.921 + 2}{0.921 + 8} = \frac{0.848 + 2.763 + 2}{8.921} = \frac{5.611}{8.921} \approx 0.629 \][/tex]
Continue the process:
3. Calculate [tex]\( f(0.629) \)[/tex]:
[tex]\[ f(0.629) = \frac{(0.629)^2 + 3 \cdot 0.629 + 2}{0.629 + 8} = \frac{0.396 + 1.887 + 2}{8.629} = \frac{4.283}{8.629} \approx 0.496 \][/tex]
After three iterations, the approximate solution converges to [tex]\( x \approx 0.496 \)[/tex]. Therefore, the approximate solution for the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations of successive approximation is:
[tex]\[ x \approx 0.496 \][/tex]
Given the functions:
[tex]\[ f(x) = \frac{x^2 + 3x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{x} \][/tex]
Starting with the initial guess [tex]\( x_0 = 1.5 \)[/tex]:
1. Calculate [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.5) = \frac{(1.5)^2 + 3 \cdot 1.5 + 2}{1.5 + 8} = \frac{2.25 + 4.5 + 2}{9.5} = \frac{8.75}{9.5} \approx 0.921 \][/tex]
(The value is approximate for this calculation to aid understanding).
Next, use this as the new input to the function [tex]\( f \)[/tex]:
2. Calculate [tex]\( f(0.921) \)[/tex]:
[tex]\[ f(0.921) = \frac{(0.921)^2 + 3 \cdot 0.921 + 2}{0.921 + 8} = \frac{0.848 + 2.763 + 2}{8.921} = \frac{5.611}{8.921} \approx 0.629 \][/tex]
Continue the process:
3. Calculate [tex]\( f(0.629) \)[/tex]:
[tex]\[ f(0.629) = \frac{(0.629)^2 + 3 \cdot 0.629 + 2}{0.629 + 8} = \frac{0.396 + 1.887 + 2}{8.629} = \frac{4.283}{8.629} \approx 0.496 \][/tex]
After three iterations, the approximate solution converges to [tex]\( x \approx 0.496 \)[/tex]. Therefore, the approximate solution for the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations of successive approximation is:
[tex]\[ x \approx 0.496 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.