Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the size of each interior angle of a regular 12-gon (dodecagon), we will follow these steps:
1. Understand the Problem: We need to determine the measure of each interior angle of a regular 12-sided polygon, known as a dodecagon.
2. Calculate the Sum of Interior Angles:
- The formula to find the sum of the interior angles of an n-sided polygon is [tex]\((n - 2) \times 180^\circ\)[/tex], where [tex]\(n\)[/tex] is the number of sides.
- For a regular 12-gon: [tex]\(n = 12\)[/tex].
- Sum of interior angles [tex]\(= (12 - 2) \times 180^\circ\)[/tex].
3. Perform the Calculation:
- Subtract 2 from the number of sides: [tex]\(12 - 2 = 10\)[/tex].
- Multiply the result by 180°: [tex]\(10 \times 180^\circ = 1800^\circ\)[/tex].
4. Determine Each Interior Angle:
- A regular polygon has all its interior angles equal.
- To find the measure of each interior angle, divide the sum of the interior angles by the number of sides.
- Each interior angle [tex]\(= \frac{\text{Sum of interior angles}}{n}\)[/tex].
- Each interior angle [tex]\(= \frac{1800^\circ}{12}\)[/tex].
5. Perform the Division:
- [tex]\( \frac{1800^\circ}{12} = 150^\circ \)[/tex].
Therefore, the size of each interior angle of a regular 12-gon is [tex]\(150^\circ\)[/tex].
In summary, the sum of the interior angles of a regular 12-gon is [tex]\(1800^\circ\)[/tex], and each interior angle is [tex]\(150^\circ\)[/tex].
1. Understand the Problem: We need to determine the measure of each interior angle of a regular 12-sided polygon, known as a dodecagon.
2. Calculate the Sum of Interior Angles:
- The formula to find the sum of the interior angles of an n-sided polygon is [tex]\((n - 2) \times 180^\circ\)[/tex], where [tex]\(n\)[/tex] is the number of sides.
- For a regular 12-gon: [tex]\(n = 12\)[/tex].
- Sum of interior angles [tex]\(= (12 - 2) \times 180^\circ\)[/tex].
3. Perform the Calculation:
- Subtract 2 from the number of sides: [tex]\(12 - 2 = 10\)[/tex].
- Multiply the result by 180°: [tex]\(10 \times 180^\circ = 1800^\circ\)[/tex].
4. Determine Each Interior Angle:
- A regular polygon has all its interior angles equal.
- To find the measure of each interior angle, divide the sum of the interior angles by the number of sides.
- Each interior angle [tex]\(= \frac{\text{Sum of interior angles}}{n}\)[/tex].
- Each interior angle [tex]\(= \frac{1800^\circ}{12}\)[/tex].
5. Perform the Division:
- [tex]\( \frac{1800^\circ}{12} = 150^\circ \)[/tex].
Therefore, the size of each interior angle of a regular 12-gon is [tex]\(150^\circ\)[/tex].
In summary, the sum of the interior angles of a regular 12-gon is [tex]\(1800^\circ\)[/tex], and each interior angle is [tex]\(150^\circ\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.