At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the greatest common factor (GCF) of the terms of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex], we need to follow a step-by-step process.
1. Identify the Coefficients: The polynomial given is [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex]. The coefficients of the terms are 9, 15, and 21.
2. Calculate the GCF of the Coefficients:
- The factors of 9 are 1, 3, 9.
- The factors of 15 are 1, 3, 5, 15.
- The factors of 21 are 1, 3, 7, 21.
- The greatest common factor of 9, 15, and 21 is 3, as it is the largest number that divides all three coefficients.
3. Determine the Common Variable Factor:
- Each term has [tex]\(x\)[/tex] raised to some power.
- The powers of [tex]\(x\)[/tex] in the terms are 4, 3, and 2.
- The smallest power of [tex]\(x\)[/tex] among the terms is [tex]\(x^2\)[/tex].
- Therefore, [tex]\(x^2\)[/tex] is the highest power of [tex]\(x\)[/tex] that can be factored out from all terms.
4. Combine the GCF of Coefficients and the Common Variable Factor:
- The GCF of the coefficients is 3.
- The common variable factor is [tex]\(x^2\)[/tex].
- Combining these, we get the greatest common factor of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex].
Therefore, the greatest common factor (GCF) of the terms of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex] is [tex]\(3x^2\)[/tex].
### Answer:
The greatest common factor of the terms of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex] is [tex]\(3x^2\)[/tex].
1. Identify the Coefficients: The polynomial given is [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex]. The coefficients of the terms are 9, 15, and 21.
2. Calculate the GCF of the Coefficients:
- The factors of 9 are 1, 3, 9.
- The factors of 15 are 1, 3, 5, 15.
- The factors of 21 are 1, 3, 7, 21.
- The greatest common factor of 9, 15, and 21 is 3, as it is the largest number that divides all three coefficients.
3. Determine the Common Variable Factor:
- Each term has [tex]\(x\)[/tex] raised to some power.
- The powers of [tex]\(x\)[/tex] in the terms are 4, 3, and 2.
- The smallest power of [tex]\(x\)[/tex] among the terms is [tex]\(x^2\)[/tex].
- Therefore, [tex]\(x^2\)[/tex] is the highest power of [tex]\(x\)[/tex] that can be factored out from all terms.
4. Combine the GCF of Coefficients and the Common Variable Factor:
- The GCF of the coefficients is 3.
- The common variable factor is [tex]\(x^2\)[/tex].
- Combining these, we get the greatest common factor of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex].
Therefore, the greatest common factor (GCF) of the terms of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex] is [tex]\(3x^2\)[/tex].
### Answer:
The greatest common factor of the terms of the polynomial [tex]\(9x^4 + 15x^3 + 21x^2\)[/tex] is [tex]\(3x^2\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.