Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the domain of the following function.

[tex]\[ f(x)=\frac{1}{(x-3)(x-5)} \][/tex]

Select the correct answer below:
A. All real numbers except -3 and 5
B. All real numbers except 3 and 5
C. All real numbers
D. All real numbers except 3 and -5
E. All real numbers except -3 and -5


Sagot :

To find the domain of the function [tex]\( f(x) = \frac{1}{(x-3)(x-5)} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is undefined.

The function [tex]\( f(x) \)[/tex] is a rational function, and it is undefined wherever the denominator is zero. Therefore, we need to find the values of [tex]\( x \)[/tex] that make the denominator equal to zero:

1. Consider the denominator [tex]\((x-3)(x-5)\)[/tex].
2. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:

[tex]\[ (x-3)(x-5) = 0 \][/tex]

3. To find the zeros, solve each factor separately:

[tex]\[ x - 3 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]

4. Solve these equations:

[tex]\[ x = 3 \quad \text{or} \quad x = 5 \][/tex]

Therefore, the function [tex]\( f(x) = \frac{1}{(x-3)(x-5)} \)[/tex] is undefined at [tex]\( x = 3 \)[/tex] and [tex]\( x = 5 \)[/tex].

Hence, the domain of the function is all real numbers except [tex]\( x = 3 \)[/tex] and [tex]\( x = 5 \)[/tex].

The correct answer is:

All real numbers except 3 and 5