Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the distance, [tex]\( d \)[/tex], between two points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] in the coordinate plane, you can use the distance formula. The distance formula for two points [tex]\( A(x_1, y_1) \)[/tex] and [tex]\( B(x_2, y_2) \)[/tex] is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Given the points:
[tex]\[ A = (-2, -10) \][/tex]
[tex]\[ B = (-6, 0) \][/tex]
Let's denote the coordinates as follows:
[tex]\[ x_1 = -2, \quad y_1 = -10 \][/tex]
[tex]\[ x_2 = -6, \quad y_2 = 0 \][/tex]
Now, substitute these values into the distance formula:
1. Calculate [tex]\( (x_2 - x_1) \)[/tex] and [tex]\( (y_2 - y_1) \)[/tex]:
[tex]\[ x_2 - x_1 = -6 - (-2) = -6 + 2 = -4 \][/tex]
[tex]\[ y_2 - y_1 = 0 - (-10) = 0 + 10 = 10 \][/tex]
2. Square each of the results:
[tex]\[ (x_2 - x_1)^2 = (-4)^2 = 16 \][/tex]
[tex]\[ (y_2 - y_1)^2 = (10)^2 = 100 \][/tex]
3. Add the squared results:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 16 + 100 = 116 \][/tex]
4. Take the square root of the sum:
[tex]\[ d = \sqrt{116} \approx 10.770329614269007 \][/tex]
5. Round the result to the nearest tenth:
[tex]\[ d \approx 10.8 \][/tex]
Therefore, the distance [tex]\( d \)[/tex] between point [tex]\( A \)[/tex] and point [tex]\( B \)[/tex] rounded to the nearest tenth is:
[tex]\[ d \approx 10.8 \][/tex]
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Given the points:
[tex]\[ A = (-2, -10) \][/tex]
[tex]\[ B = (-6, 0) \][/tex]
Let's denote the coordinates as follows:
[tex]\[ x_1 = -2, \quad y_1 = -10 \][/tex]
[tex]\[ x_2 = -6, \quad y_2 = 0 \][/tex]
Now, substitute these values into the distance formula:
1. Calculate [tex]\( (x_2 - x_1) \)[/tex] and [tex]\( (y_2 - y_1) \)[/tex]:
[tex]\[ x_2 - x_1 = -6 - (-2) = -6 + 2 = -4 \][/tex]
[tex]\[ y_2 - y_1 = 0 - (-10) = 0 + 10 = 10 \][/tex]
2. Square each of the results:
[tex]\[ (x_2 - x_1)^2 = (-4)^2 = 16 \][/tex]
[tex]\[ (y_2 - y_1)^2 = (10)^2 = 100 \][/tex]
3. Add the squared results:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 16 + 100 = 116 \][/tex]
4. Take the square root of the sum:
[tex]\[ d = \sqrt{116} \approx 10.770329614269007 \][/tex]
5. Round the result to the nearest tenth:
[tex]\[ d \approx 10.8 \][/tex]
Therefore, the distance [tex]\( d \)[/tex] between point [tex]\( A \)[/tex] and point [tex]\( B \)[/tex] rounded to the nearest tenth is:
[tex]\[ d \approx 10.8 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.