At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the [tex]\( x \)[/tex]-coordinate of the solution for the given system of equations
[tex]\[ \left\{\begin{array}{l} 3x + 3y = 3 \\ y = -\frac{1}{2} x + 2 \end{array}\right. \][/tex]
we will solve this system step-by-step.
### Step 1: Simplify the first equation
First, let's simplify the first equation by dividing every term by 3:
[tex]\[ 3x + 3y = 3 \quad \Rightarrow \quad x + y = 1 \][/tex]
This simplification makes the system:
[tex]\[ \left\{\begin{array}{l} x + y = 1 \\ y = -\frac{1}{2}x + 2 \end{array}\right. \][/tex]
### Step 2: Use substitution
We will use substitution to solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Since we already have [tex]\( y \)[/tex] expressed in terms of [tex]\( x \)[/tex] from the second equation:
[tex]\[ y = -\frac{1}{2}x + 2 \][/tex]
we can substitute this into the first equation:
[tex]\[ x + \left( -\frac{1}{2}x + 2 \right) = 1 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, let's solve for [tex]\( x \)[/tex]:
[tex]\[ x - \frac{1}{2}x + 2 = 1 \][/tex]
[tex]\[ \frac{1}{2}x + 2 = 1 \][/tex]
Subtract 2 from both sides:
[tex]\[ \frac{1}{2}x = -1 \][/tex]
Multiply both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = -2 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Now that we have [tex]\( x = -2 \)[/tex], substitute this back into the second equation to find [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{2}(-2) + 2 \][/tex]
[tex]\[ y = 1 + 2 \][/tex]
[tex]\[ y = 3 \][/tex]
### Step 5: Verify the solution
Let's verify that [tex]\((x, y) = (-2, 3)\)[/tex] satisfies both original equations:
1. For the first equation [tex]\( 3x + 3y = 3 \)[/tex]:
[tex]\[ 3(-2) + 3(3) = -6 + 9 = 3 \][/tex]
This is correct.
2. For the second equation [tex]\( y = -\frac{1}{2}x + 2 \)[/tex]:
[tex]\[ 3 = -\frac{1}{2}(-2) + 2 = 1 + 2 = 3 \][/tex]
This is also correct.
Thus, the solution to the system of equations is [tex]\((x, y) = (-2, 3)\)[/tex].
### Answer
The [tex]\( x \)[/tex]-coordinate of the solution is [tex]\( \boxed{-2} \)[/tex].
[tex]\[ \left\{\begin{array}{l} 3x + 3y = 3 \\ y = -\frac{1}{2} x + 2 \end{array}\right. \][/tex]
we will solve this system step-by-step.
### Step 1: Simplify the first equation
First, let's simplify the first equation by dividing every term by 3:
[tex]\[ 3x + 3y = 3 \quad \Rightarrow \quad x + y = 1 \][/tex]
This simplification makes the system:
[tex]\[ \left\{\begin{array}{l} x + y = 1 \\ y = -\frac{1}{2}x + 2 \end{array}\right. \][/tex]
### Step 2: Use substitution
We will use substitution to solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Since we already have [tex]\( y \)[/tex] expressed in terms of [tex]\( x \)[/tex] from the second equation:
[tex]\[ y = -\frac{1}{2}x + 2 \][/tex]
we can substitute this into the first equation:
[tex]\[ x + \left( -\frac{1}{2}x + 2 \right) = 1 \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, let's solve for [tex]\( x \)[/tex]:
[tex]\[ x - \frac{1}{2}x + 2 = 1 \][/tex]
[tex]\[ \frac{1}{2}x + 2 = 1 \][/tex]
Subtract 2 from both sides:
[tex]\[ \frac{1}{2}x = -1 \][/tex]
Multiply both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = -2 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Now that we have [tex]\( x = -2 \)[/tex], substitute this back into the second equation to find [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{2}(-2) + 2 \][/tex]
[tex]\[ y = 1 + 2 \][/tex]
[tex]\[ y = 3 \][/tex]
### Step 5: Verify the solution
Let's verify that [tex]\((x, y) = (-2, 3)\)[/tex] satisfies both original equations:
1. For the first equation [tex]\( 3x + 3y = 3 \)[/tex]:
[tex]\[ 3(-2) + 3(3) = -6 + 9 = 3 \][/tex]
This is correct.
2. For the second equation [tex]\( y = -\frac{1}{2}x + 2 \)[/tex]:
[tex]\[ 3 = -\frac{1}{2}(-2) + 2 = 1 + 2 = 3 \][/tex]
This is also correct.
Thus, the solution to the system of equations is [tex]\((x, y) = (-2, 3)\)[/tex].
### Answer
The [tex]\( x \)[/tex]-coordinate of the solution is [tex]\( \boxed{-2} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.