Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To simplify the quotient [tex]\(\frac{2 m^9 n^4}{-4 m^{-3} n^{-2}}\)[/tex], let's break it down step by step.
1. Simplify the coefficients:
The coefficients are [tex]\(2\)[/tex] in the numerator and [tex]\(-4\)[/tex] in the denominator.
[tex]\[ \frac{2}{-4} = -0.5 \][/tex]
2. Combine the [tex]\(m\)[/tex] terms using the properties of exponents:
When dividing like bases, subtract the exponents.
For the [tex]\(m\)[/tex] terms, we have [tex]\(m^9\)[/tex] in the numerator and [tex]\(m^{-3}\)[/tex] in the denominator.
[tex]\[ \frac{m^9}{m^{-3}} = m^{9 - (-3)} = m^{9 + 3} = m^{12} \][/tex]
3. Combine the [tex]\(n\)[/tex] terms using the properties of exponents:
Similarly, for the [tex]\(n\)[/tex] terms, we have [tex]\(n^4\)[/tex] in the numerator and [tex]\(n^{-2}\)[/tex] in the denominator.
[tex]\[ \frac{n^4}{n^{-2}} = n^{4 - (-2)} = n^{4 + 2} = n^6 \][/tex]
4. Combine the simplified terms:
After simplifying the coefficients and the terms with [tex]\(m\)[/tex] and [tex]\(n\)[/tex], we get:
[tex]\[ -0.5 \cdot m^{12} \cdot n^6 \][/tex]
5. Write the final simplified quotient:
The quotient in simplest form is:
[tex]\[ -0.5 m^{12} n^6 \][/tex]
Therefore, the correct answer from the given options is:
[tex]\[ -\frac{m^{12} n^6}{2} \][/tex]
1. Simplify the coefficients:
The coefficients are [tex]\(2\)[/tex] in the numerator and [tex]\(-4\)[/tex] in the denominator.
[tex]\[ \frac{2}{-4} = -0.5 \][/tex]
2. Combine the [tex]\(m\)[/tex] terms using the properties of exponents:
When dividing like bases, subtract the exponents.
For the [tex]\(m\)[/tex] terms, we have [tex]\(m^9\)[/tex] in the numerator and [tex]\(m^{-3}\)[/tex] in the denominator.
[tex]\[ \frac{m^9}{m^{-3}} = m^{9 - (-3)} = m^{9 + 3} = m^{12} \][/tex]
3. Combine the [tex]\(n\)[/tex] terms using the properties of exponents:
Similarly, for the [tex]\(n\)[/tex] terms, we have [tex]\(n^4\)[/tex] in the numerator and [tex]\(n^{-2}\)[/tex] in the denominator.
[tex]\[ \frac{n^4}{n^{-2}} = n^{4 - (-2)} = n^{4 + 2} = n^6 \][/tex]
4. Combine the simplified terms:
After simplifying the coefficients and the terms with [tex]\(m\)[/tex] and [tex]\(n\)[/tex], we get:
[tex]\[ -0.5 \cdot m^{12} \cdot n^6 \][/tex]
5. Write the final simplified quotient:
The quotient in simplest form is:
[tex]\[ -0.5 m^{12} n^6 \][/tex]
Therefore, the correct answer from the given options is:
[tex]\[ -\frac{m^{12} n^6}{2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.