Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the given expression [tex]\(\left(a^3 b^{12} c^2\right) \times\left(a^5 c^2\right) \times\left(b^5 c^4\right)^0\)[/tex], follow these steps:
1. Simplify the expression inside each term:
- Notice that [tex]\(\left(b^5 c^4\right)^0\)[/tex] simplifies to 1 because any non-zero number or expression raised to the power of 0 is equal to 1.
Therefore, the expression reduces to:
[tex]\[ (a^3 b^{12} c^2) \times (a^5 c^2) \times 1 \][/tex]
Simplifying further:
[tex]\[ (a^3 b^{12} c^2) \times (a^5 c^2) \][/tex]
2. Combine like terms:
- For the base [tex]\(a\)[/tex], add the exponents from both terms:
[tex]\[ a^{3+5} = a^8 \][/tex]
- For the base [tex]\(b\)[/tex], since it appears only in the first term and the second term has no [tex]\(b\)[/tex], keep the exponent as it is:
[tex]\[ b^{12} \][/tex]
- For the base [tex]\(c\)[/tex], add the exponents from both terms:
[tex]\[ c^{2+2} = c^4 \][/tex]
3. Write the final simplified expression:
[tex]\[ a^8 b^{12} c^4 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{a^8 b^{12} c^4} \][/tex]
Comparing with the options given:
A. [tex]\(a^{15} b^{12} c^4\)[/tex]
B. [tex]\(a^8 b^{17} c^8\)[/tex]
C. [tex]\(a^8 b^{12} c^4\)[/tex]
D. [tex]\(a^{14} b^{15} c^9\)[/tex]
The correct option is:
C. [tex]\(a^8 b^{12} c^4\)[/tex]
1. Simplify the expression inside each term:
- Notice that [tex]\(\left(b^5 c^4\right)^0\)[/tex] simplifies to 1 because any non-zero number or expression raised to the power of 0 is equal to 1.
Therefore, the expression reduces to:
[tex]\[ (a^3 b^{12} c^2) \times (a^5 c^2) \times 1 \][/tex]
Simplifying further:
[tex]\[ (a^3 b^{12} c^2) \times (a^5 c^2) \][/tex]
2. Combine like terms:
- For the base [tex]\(a\)[/tex], add the exponents from both terms:
[tex]\[ a^{3+5} = a^8 \][/tex]
- For the base [tex]\(b\)[/tex], since it appears only in the first term and the second term has no [tex]\(b\)[/tex], keep the exponent as it is:
[tex]\[ b^{12} \][/tex]
- For the base [tex]\(c\)[/tex], add the exponents from both terms:
[tex]\[ c^{2+2} = c^4 \][/tex]
3. Write the final simplified expression:
[tex]\[ a^8 b^{12} c^4 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{a^8 b^{12} c^4} \][/tex]
Comparing with the options given:
A. [tex]\(a^{15} b^{12} c^4\)[/tex]
B. [tex]\(a^8 b^{17} c^8\)[/tex]
C. [tex]\(a^8 b^{12} c^4\)[/tex]
D. [tex]\(a^{14} b^{15} c^9\)[/tex]
The correct option is:
C. [tex]\(a^8 b^{12} c^4\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.