Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze the problem step-by-step. We need to find out which trial's cart has the greatest momentum at the bottom of the ramp.
Momentum ([tex]\( p \)[/tex]) is calculated using the formula:
[tex]\[ p = m \times v \][/tex]
where [tex]\( m \)[/tex] is the mass of the cart and [tex]\( v \)[/tex] is the velocity at the bottom of the ramp.
We have four trials with the following data:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Trial} & \text{Mass of Cart (kg)} & \text{Velocity at Bottom (m/s)} \\ \hline 1 & 200 & 6.5 \\ 2 & 220 & 5.0 \\ 3 & 240 & 6.4 \\ 4 & 260 & 4.8 \\ \hline \end{array} \][/tex]
Let's calculate the momentum for each trial:
1. Trial 1:
[tex]\[ p_1 = 200 \, \text{kg} \times 6.5 \, \text{m/s} = 1300 \, \text{kg} \cdot \text{m/s} \][/tex]
2. Trial 2:
[tex]\[ p_2 = 220 \, \text{kg} \times 5.0 \, \text{m/s} = 1100 \, \text{kg} \cdot \text{m/s} \][/tex]
3. Trial 3:
[tex]\[ p_3 = 240 \, \text{kg} \times 6.4 \, \text{m/s} = 1536 \, \text{kg} \cdot \text{m/s} \][/tex]
4. Trial 4:
[tex]\[ p_4 = 260 \, \text{kg} \times 4.8 \, \text{m/s} = 1248 \, \text{kg} \cdot \text{m/s} \][/tex]
Now we compare these momenta:
- Trial 1: [tex]\( 1300 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Trial 2: [tex]\( 1100 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Trial 3: [tex]\( 1536 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Trial 4: [tex]\( 1248 \, \text{kg} \cdot \text{m/s} \)[/tex]
From these values, we see that Trial 3 has the greatest momentum: [tex]\( 1536 \, \text{kg} \cdot \text{m/s} \)[/tex].
Therefore, the answer is:
Trial 3, because this trial has a large mass and a large velocity.
Momentum ([tex]\( p \)[/tex]) is calculated using the formula:
[tex]\[ p = m \times v \][/tex]
where [tex]\( m \)[/tex] is the mass of the cart and [tex]\( v \)[/tex] is the velocity at the bottom of the ramp.
We have four trials with the following data:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Trial} & \text{Mass of Cart (kg)} & \text{Velocity at Bottom (m/s)} \\ \hline 1 & 200 & 6.5 \\ 2 & 220 & 5.0 \\ 3 & 240 & 6.4 \\ 4 & 260 & 4.8 \\ \hline \end{array} \][/tex]
Let's calculate the momentum for each trial:
1. Trial 1:
[tex]\[ p_1 = 200 \, \text{kg} \times 6.5 \, \text{m/s} = 1300 \, \text{kg} \cdot \text{m/s} \][/tex]
2. Trial 2:
[tex]\[ p_2 = 220 \, \text{kg} \times 5.0 \, \text{m/s} = 1100 \, \text{kg} \cdot \text{m/s} \][/tex]
3. Trial 3:
[tex]\[ p_3 = 240 \, \text{kg} \times 6.4 \, \text{m/s} = 1536 \, \text{kg} \cdot \text{m/s} \][/tex]
4. Trial 4:
[tex]\[ p_4 = 260 \, \text{kg} \times 4.8 \, \text{m/s} = 1248 \, \text{kg} \cdot \text{m/s} \][/tex]
Now we compare these momenta:
- Trial 1: [tex]\( 1300 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Trial 2: [tex]\( 1100 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Trial 3: [tex]\( 1536 \, \text{kg} \cdot \text{m/s} \)[/tex]
- Trial 4: [tex]\( 1248 \, \text{kg} \cdot \text{m/s} \)[/tex]
From these values, we see that Trial 3 has the greatest momentum: [tex]\( 1536 \, \text{kg} \cdot \text{m/s} \)[/tex].
Therefore, the answer is:
Trial 3, because this trial has a large mass and a large velocity.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.