Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the inequality [tex]\( m - 2(m - 4) \leq 3m \)[/tex], follow these steps:
1. Expand and simplify the left-hand side: Distribute the [tex]\(-2\)[/tex] inside the parentheses:
[tex]\[ m - 2(m - 4) = m - 2m + 8 \][/tex]
Simplify the expression:
[tex]\[ m - 2m + 8 = -m + 8 \][/tex]
2. Write the inequality: Substitute the simplified expression back into the inequality:
[tex]\[ -m + 8 \leq 3m \][/tex]
3. Isolate the variable [tex]\(m\)[/tex]: To do this, add [tex]\(m\)[/tex] to both sides of the inequality in order to get all [tex]\(m\)[/tex] terms on one side:
[tex]\[ -m + m + 8 \leq 3m + m \][/tex]
Simplify:
[tex]\[ 8 \leq 4m \][/tex]
4. Solve for [tex]\(m\)[/tex]: Divide both sides of the inequality by 4 to isolate [tex]\(m\)[/tex]:
[tex]\[ \frac{8}{4} \leq \frac{4m}{4} \][/tex]
Simplify:
[tex]\[ 2 \leq m \][/tex]
This can be rewritten as:
[tex]\[ m \geq 2 \][/tex]
So, the solution to the inequality [tex]\( m - 2(m - 4) \leq 3m \)[/tex] is:
[tex]\[ m \geq 2 \][/tex]
1. Expand and simplify the left-hand side: Distribute the [tex]\(-2\)[/tex] inside the parentheses:
[tex]\[ m - 2(m - 4) = m - 2m + 8 \][/tex]
Simplify the expression:
[tex]\[ m - 2m + 8 = -m + 8 \][/tex]
2. Write the inequality: Substitute the simplified expression back into the inequality:
[tex]\[ -m + 8 \leq 3m \][/tex]
3. Isolate the variable [tex]\(m\)[/tex]: To do this, add [tex]\(m\)[/tex] to both sides of the inequality in order to get all [tex]\(m\)[/tex] terms on one side:
[tex]\[ -m + m + 8 \leq 3m + m \][/tex]
Simplify:
[tex]\[ 8 \leq 4m \][/tex]
4. Solve for [tex]\(m\)[/tex]: Divide both sides of the inequality by 4 to isolate [tex]\(m\)[/tex]:
[tex]\[ \frac{8}{4} \leq \frac{4m}{4} \][/tex]
Simplify:
[tex]\[ 2 \leq m \][/tex]
This can be rewritten as:
[tex]\[ m \geq 2 \][/tex]
So, the solution to the inequality [tex]\( m - 2(m - 4) \leq 3m \)[/tex] is:
[tex]\[ m \geq 2 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.