At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the inequality [tex]\( m - 2(m - 4) \leq 3m \)[/tex], follow these steps:
1. Expand and simplify the left-hand side: Distribute the [tex]\(-2\)[/tex] inside the parentheses:
[tex]\[ m - 2(m - 4) = m - 2m + 8 \][/tex]
Simplify the expression:
[tex]\[ m - 2m + 8 = -m + 8 \][/tex]
2. Write the inequality: Substitute the simplified expression back into the inequality:
[tex]\[ -m + 8 \leq 3m \][/tex]
3. Isolate the variable [tex]\(m\)[/tex]: To do this, add [tex]\(m\)[/tex] to both sides of the inequality in order to get all [tex]\(m\)[/tex] terms on one side:
[tex]\[ -m + m + 8 \leq 3m + m \][/tex]
Simplify:
[tex]\[ 8 \leq 4m \][/tex]
4. Solve for [tex]\(m\)[/tex]: Divide both sides of the inequality by 4 to isolate [tex]\(m\)[/tex]:
[tex]\[ \frac{8}{4} \leq \frac{4m}{4} \][/tex]
Simplify:
[tex]\[ 2 \leq m \][/tex]
This can be rewritten as:
[tex]\[ m \geq 2 \][/tex]
So, the solution to the inequality [tex]\( m - 2(m - 4) \leq 3m \)[/tex] is:
[tex]\[ m \geq 2 \][/tex]
1. Expand and simplify the left-hand side: Distribute the [tex]\(-2\)[/tex] inside the parentheses:
[tex]\[ m - 2(m - 4) = m - 2m + 8 \][/tex]
Simplify the expression:
[tex]\[ m - 2m + 8 = -m + 8 \][/tex]
2. Write the inequality: Substitute the simplified expression back into the inequality:
[tex]\[ -m + 8 \leq 3m \][/tex]
3. Isolate the variable [tex]\(m\)[/tex]: To do this, add [tex]\(m\)[/tex] to both sides of the inequality in order to get all [tex]\(m\)[/tex] terms on one side:
[tex]\[ -m + m + 8 \leq 3m + m \][/tex]
Simplify:
[tex]\[ 8 \leq 4m \][/tex]
4. Solve for [tex]\(m\)[/tex]: Divide both sides of the inequality by 4 to isolate [tex]\(m\)[/tex]:
[tex]\[ \frac{8}{4} \leq \frac{4m}{4} \][/tex]
Simplify:
[tex]\[ 2 \leq m \][/tex]
This can be rewritten as:
[tex]\[ m \geq 2 \][/tex]
So, the solution to the inequality [tex]\( m - 2(m - 4) \leq 3m \)[/tex] is:
[tex]\[ m \geq 2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.