Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the limit of the sequence given by [tex]\( a_n = e^{\frac{2n}{3n + 6}} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, follow these steps:
1. Analyze the exponent: We first focus on the expression inside the exponent, which is [tex]\( \frac{2n}{3n + 6} \)[/tex].
2. Simplify the fraction: To simplify [tex]\( \frac{2n}{3n + 6} \)[/tex], divide both the numerator and the denominator by [tex]\( n \)[/tex]:
[tex]\[ \frac{2n}{3n + 6} = \frac{2n / n}{(3n + 6) / n} = \frac{2}{3 + \frac{6}{n}} \][/tex]
3. Evaluate the limit inside the exponent: As [tex]\( n \)[/tex] approaches infinity, the term [tex]\( \frac{6}{n} \)[/tex] approaches 0. Therefore, the expression [tex]\( 3 + \frac{6}{n} \)[/tex] approaches 3, and so:
[tex]\[ \lim_{n \to \infty} \frac{2}{3 + \frac{6}{n}} = \frac{2}{3} \][/tex]
4. Apply the limit to the entire expression: Now we evaluate the limit of the entire expression [tex]\( a_n \)[/tex]. Since the exponent [tex]\( \frac{2n}{3n + 6} \)[/tex] approaches [tex]\( \frac{2}{3} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, we get:
[tex]\[ \lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\frac{2n}{3n + 6}} = e^{\frac{2}{3}} \][/tex]
Therefore, the limit of the sequence [tex]\( a_n = e^{\frac{2n}{3n + 6}} \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \to \infty} a_n = e^{\frac{2}{3}} \][/tex]
1. Analyze the exponent: We first focus on the expression inside the exponent, which is [tex]\( \frac{2n}{3n + 6} \)[/tex].
2. Simplify the fraction: To simplify [tex]\( \frac{2n}{3n + 6} \)[/tex], divide both the numerator and the denominator by [tex]\( n \)[/tex]:
[tex]\[ \frac{2n}{3n + 6} = \frac{2n / n}{(3n + 6) / n} = \frac{2}{3 + \frac{6}{n}} \][/tex]
3. Evaluate the limit inside the exponent: As [tex]\( n \)[/tex] approaches infinity, the term [tex]\( \frac{6}{n} \)[/tex] approaches 0. Therefore, the expression [tex]\( 3 + \frac{6}{n} \)[/tex] approaches 3, and so:
[tex]\[ \lim_{n \to \infty} \frac{2}{3 + \frac{6}{n}} = \frac{2}{3} \][/tex]
4. Apply the limit to the entire expression: Now we evaluate the limit of the entire expression [tex]\( a_n \)[/tex]. Since the exponent [tex]\( \frac{2n}{3n + 6} \)[/tex] approaches [tex]\( \frac{2}{3} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, we get:
[tex]\[ \lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\frac{2n}{3n + 6}} = e^{\frac{2}{3}} \][/tex]
Therefore, the limit of the sequence [tex]\( a_n = e^{\frac{2n}{3n + 6}} \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \to \infty} a_n = e^{\frac{2}{3}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.