Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the limit of the sequence given by [tex]\( a_n = e^{\frac{2n}{3n + 6}} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, follow these steps:
1. Analyze the exponent: We first focus on the expression inside the exponent, which is [tex]\( \frac{2n}{3n + 6} \)[/tex].
2. Simplify the fraction: To simplify [tex]\( \frac{2n}{3n + 6} \)[/tex], divide both the numerator and the denominator by [tex]\( n \)[/tex]:
[tex]\[ \frac{2n}{3n + 6} = \frac{2n / n}{(3n + 6) / n} = \frac{2}{3 + \frac{6}{n}} \][/tex]
3. Evaluate the limit inside the exponent: As [tex]\( n \)[/tex] approaches infinity, the term [tex]\( \frac{6}{n} \)[/tex] approaches 0. Therefore, the expression [tex]\( 3 + \frac{6}{n} \)[/tex] approaches 3, and so:
[tex]\[ \lim_{n \to \infty} \frac{2}{3 + \frac{6}{n}} = \frac{2}{3} \][/tex]
4. Apply the limit to the entire expression: Now we evaluate the limit of the entire expression [tex]\( a_n \)[/tex]. Since the exponent [tex]\( \frac{2n}{3n + 6} \)[/tex] approaches [tex]\( \frac{2}{3} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, we get:
[tex]\[ \lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\frac{2n}{3n + 6}} = e^{\frac{2}{3}} \][/tex]
Therefore, the limit of the sequence [tex]\( a_n = e^{\frac{2n}{3n + 6}} \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \to \infty} a_n = e^{\frac{2}{3}} \][/tex]
1. Analyze the exponent: We first focus on the expression inside the exponent, which is [tex]\( \frac{2n}{3n + 6} \)[/tex].
2. Simplify the fraction: To simplify [tex]\( \frac{2n}{3n + 6} \)[/tex], divide both the numerator and the denominator by [tex]\( n \)[/tex]:
[tex]\[ \frac{2n}{3n + 6} = \frac{2n / n}{(3n + 6) / n} = \frac{2}{3 + \frac{6}{n}} \][/tex]
3. Evaluate the limit inside the exponent: As [tex]\( n \)[/tex] approaches infinity, the term [tex]\( \frac{6}{n} \)[/tex] approaches 0. Therefore, the expression [tex]\( 3 + \frac{6}{n} \)[/tex] approaches 3, and so:
[tex]\[ \lim_{n \to \infty} \frac{2}{3 + \frac{6}{n}} = \frac{2}{3} \][/tex]
4. Apply the limit to the entire expression: Now we evaluate the limit of the entire expression [tex]\( a_n \)[/tex]. Since the exponent [tex]\( \frac{2n}{3n + 6} \)[/tex] approaches [tex]\( \frac{2}{3} \)[/tex] as [tex]\( n \)[/tex] approaches infinity, we get:
[tex]\[ \lim_{n \to \infty} a_n = \lim_{n \to \infty} e^{\frac{2n}{3n + 6}} = e^{\frac{2}{3}} \][/tex]
Therefore, the limit of the sequence [tex]\( a_n = e^{\frac{2n}{3n + 6}} \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \to \infty} a_n = e^{\frac{2}{3}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.