Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the given problem step-by-step.
1. Calculate [tex]\( p \)[/tex]:
We need to determine the value of [tex]\( p \)[/tex], where
[tex]\[ p = \binom{-7}{1} \][/tex]
The binomial coefficient [tex]\(\binom{n}{k}\)[/tex] represents the number of ways to choose [tex]\( k \)[/tex] objects from [tex]\( n \)[/tex] objects without regard to the order of selection. For any non-negative integer [tex]\( n \)[/tex], [tex]\(\binom{n}{k}\)[/tex] is defined as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
However, the binomial coefficient for negative integers and/or when [tex]\( k > n \)[/tex] is defined to be 0. In our case, since [tex]\( n = -7 \)[/tex] is negative, we have:
[tex]\[ \binom{-7}{1} = 0 \][/tex]
2. Calculate [tex]\( q \)[/tex]:
Next, we determine the value of [tex]\( q \)[/tex], where
[tex]\[ q = \binom{11}{15} \][/tex]
Here, [tex]\( k = 15 \)[/tex] is greater than [tex]\( n = 11 \)[/tex]. By the properties of binomial coefficients, when [tex]\( k > n \)[/tex], the value of the binomial coefficient is 0:
[tex]\[ \binom{11}{15} = 0 \][/tex]
3. Calculate [tex]\( 4p + q \)[/tex]:
With [tex]\( p = 0 \)[/tex] and [tex]\( q = 0 \)[/tex], we now calculate [tex]\( 4p + q \)[/tex]:
[tex]\[ 4p + q = 4 \times 0 + 0 = 0 \][/tex]
4. Express the result as a column vector:
Finally, expressing the result in the form of a column vector, we get:
[tex]\[ \begin{pmatrix} 0 \end{pmatrix} \][/tex]
So, the column vector representing [tex]\( 4p + q \)[/tex] is:
[tex]\[ \begin{pmatrix} 0 \end{pmatrix} \][/tex]
1. Calculate [tex]\( p \)[/tex]:
We need to determine the value of [tex]\( p \)[/tex], where
[tex]\[ p = \binom{-7}{1} \][/tex]
The binomial coefficient [tex]\(\binom{n}{k}\)[/tex] represents the number of ways to choose [tex]\( k \)[/tex] objects from [tex]\( n \)[/tex] objects without regard to the order of selection. For any non-negative integer [tex]\( n \)[/tex], [tex]\(\binom{n}{k}\)[/tex] is defined as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
However, the binomial coefficient for negative integers and/or when [tex]\( k > n \)[/tex] is defined to be 0. In our case, since [tex]\( n = -7 \)[/tex] is negative, we have:
[tex]\[ \binom{-7}{1} = 0 \][/tex]
2. Calculate [tex]\( q \)[/tex]:
Next, we determine the value of [tex]\( q \)[/tex], where
[tex]\[ q = \binom{11}{15} \][/tex]
Here, [tex]\( k = 15 \)[/tex] is greater than [tex]\( n = 11 \)[/tex]. By the properties of binomial coefficients, when [tex]\( k > n \)[/tex], the value of the binomial coefficient is 0:
[tex]\[ \binom{11}{15} = 0 \][/tex]
3. Calculate [tex]\( 4p + q \)[/tex]:
With [tex]\( p = 0 \)[/tex] and [tex]\( q = 0 \)[/tex], we now calculate [tex]\( 4p + q \)[/tex]:
[tex]\[ 4p + q = 4 \times 0 + 0 = 0 \][/tex]
4. Express the result as a column vector:
Finally, expressing the result in the form of a column vector, we get:
[tex]\[ \begin{pmatrix} 0 \end{pmatrix} \][/tex]
So, the column vector representing [tex]\( 4p + q \)[/tex] is:
[tex]\[ \begin{pmatrix} 0 \end{pmatrix} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.