Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Daniel has 23 coins in nickels and dimes in his pocket, for a total of [tex]\$ 2.20[/tex].

How many of each coin does he have?

[tex]\[
\begin{cases}
0.05N + 0.10D = 2.20 \\
N + D = 23
\end{cases}
\][/tex]

Now use the equations to find the number of nickels and dimes Daniel has.

Nickels [tex]= \, \_ \_ \_[/tex]
Dimes [tex]= \, \_ \_ \_[/tex]

Sagot :

To determine the number of nickels (denoted as [tex]\( N \)[/tex]) and the number of dimes (denoted as [tex]\( D \)[/tex]) that Daniel has, we can solve the following system of linear equations:

[tex]\[ \begin{cases} 0.05N + 0.10D = 2.20 \\ N + D = 23 \end{cases} \][/tex]

Here's a detailed step-by-step solution:

1. Solve the second equation for one of the variables. Let's solve for [tex]\( N \)[/tex] in terms of [tex]\( D \)[/tex]:

[tex]\[ N + D = 23 \quad \Rightarrow \quad N = 23 - D \][/tex]

2. Substitute this expression for [tex]\( N \)[/tex] into the first equation to eliminate [tex]\( N \)[/tex]:

[tex]\[ 0.05(23 - D) + 0.10D = 2.20 \][/tex]

3. Distribute the 0.05 into the parentheses:

[tex]\[ 0.05 \cdot 23 - 0.05D + 0.10D = 2.20 \quad \Rightarrow \quad 1.15 - 0.05D + 0.10D = 2.20 \][/tex]

4. Combine like terms (combine the terms with [tex]\( D \)[/tex]):

[tex]\[ 1.15 + 0.05D = 2.20 \][/tex]

5. Isolate [tex]\( D \)[/tex] by subtracting 1.15 from both sides:

[tex]\[ 0.05D = 2.20 - 1.15 \quad \Rightarrow \quad 0.05D = 1.05 \][/tex]

6. Divide both sides by 0.05 to solve for [tex]\( D \)[/tex]:

[tex]\[ D = \frac{1.05}{0.05} \quad \Rightarrow \quad D = 21 \][/tex]

7. Now that we have [tex]\( D \)[/tex], substitute it back into the equation [tex]\( N = 23 - D \)[/tex]:

[tex]\[ N = 23 - 21 \quad \Rightarrow \quad N = 2 \][/tex]

Thus, Daniel has:

Nickels [tex]\( N = 2 \)[/tex]

Dimes [tex]\( D = 21 \)[/tex]

So, Daniel has [tex]\( 2 \)[/tex] nickels and [tex]\( 21 \)[/tex] dimes.