Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's analyze each inequality one by one and find the possible values of [tex]\( x \)[/tex] that satisfy each condition.
1. Inequality: [tex]\( x > 28 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 28. Since [tex]\( x \)[/tex] cannot be simultaneously greater than 28 and meet the other conditions, this inequality does not provide a feasible solution within the constraints of the other inequalities.
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ \text{no solution} \][/tex]
2. Inequality: [tex]\( 0 < x < 28 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 0 and less than 28. The values for [tex]\( x \)[/tex] that satisfy this inequality lie within the interval (0, 28).
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ (0, 28) \][/tex]
3. Inequality: [tex]\( x > 8 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 8. The values for [tex]\( x \)[/tex] that satisfy this inequality lie in the interval (8, ∞).
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ (8, \infty) \][/tex]
4. Inequality: [tex]\( 1 < x < 8 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 1 and less than 8. The values for [tex]\( x \)[/tex] that satisfy this inequality lie within the interval (1, 8).
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ (1, 8) \][/tex]
In summary, the solutions to the respective inequalities are:
1. [tex]\( x > 28 \)[/tex] leads to no solution.
2. [tex]\( 0 < x < 28 \)[/tex] leads to [tex]\( (0, 28) \)[/tex].
3. [tex]\( x > 8 \)[/tex] leads to [tex]\( (8, \infty) \)[/tex].
4. [tex]\( 1 < x < 8 \)[/tex] leads to [tex]\( (1, 8) \)[/tex].
1. Inequality: [tex]\( x > 28 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 28. Since [tex]\( x \)[/tex] cannot be simultaneously greater than 28 and meet the other conditions, this inequality does not provide a feasible solution within the constraints of the other inequalities.
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ \text{no solution} \][/tex]
2. Inequality: [tex]\( 0 < x < 28 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 0 and less than 28. The values for [tex]\( x \)[/tex] that satisfy this inequality lie within the interval (0, 28).
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ (0, 28) \][/tex]
3. Inequality: [tex]\( x > 8 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 8. The values for [tex]\( x \)[/tex] that satisfy this inequality lie in the interval (8, ∞).
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ (8, \infty) \][/tex]
4. Inequality: [tex]\( 1 < x < 8 \)[/tex]
This inequality states that [tex]\( x \)[/tex] must be greater than 1 and less than 8. The values for [tex]\( x \)[/tex] that satisfy this inequality lie within the interval (1, 8).
Therefore, the possible values for [tex]\( x \)[/tex] in this case are:
[tex]\[ (1, 8) \][/tex]
In summary, the solutions to the respective inequalities are:
1. [tex]\( x > 28 \)[/tex] leads to no solution.
2. [tex]\( 0 < x < 28 \)[/tex] leads to [tex]\( (0, 28) \)[/tex].
3. [tex]\( x > 8 \)[/tex] leads to [tex]\( (8, \infty) \)[/tex].
4. [tex]\( 1 < x < 8 \)[/tex] leads to [tex]\( (1, 8) \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.