Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! To determine the final velocity of the monkey, we need to follow a step-by-step approach using physics principles, specifically kinematic equations.
### Step-by-Step Solution:
1. Identify the given values:
- Initial velocity ([tex]\(u\)[/tex]): 1.24 m/s
- Distance traveled ([tex]\(s\)[/tex]): 6.71 meters
- Time taken ([tex]\(t\)[/tex]): 4.55 seconds
2. Use the kinematic equation to find the acceleration ([tex]\(a\)[/tex]):
The equation relating distance, initial velocity, acceleration, and time is:
[tex]\[ s = ut + \frac{1}{2} a t^2 \][/tex]
Substitute the known values into the equation:
[tex]\[ 6.71 = (1.24 \cdot 4.55) + \frac{1}{2} a (4.55)^2 \][/tex]
3. Calculate the initial velocity component:
[tex]\[ (1.24 \times 4.55) = 5.642 \][/tex]
4. Isolate the term involving acceleration:
[tex]\[ 6.71 - 5.642 = \frac{1}{2} a (4.55)^2 \][/tex]
[tex]\[ 1.068 = \frac{1}{2} a (20.7025) \][/tex]
5. Solve for acceleration ([tex]\(a\)[/tex]):
[tex]\[ 1.068 = 10.35125a \][/tex]
[tex]\[ a = \frac{1.068}{10.35125} = 0.103 \][/tex]
6. Use the final velocity equation to find the final velocity ([tex]\(v_f\)[/tex]):
The equation relating final velocity, initial velocity, acceleration, and time is:
[tex]\[ v_f = u + a t \][/tex]
Substitute the known values:
[tex]\[ v_f = 1.24 + (0.103 \times 4.55) \][/tex]
7. Calculate the final velocity:
[tex]\[ v_f = 1.24 + 0.469 \][/tex]
[tex]\[ v_f = 1.709 \][/tex]
Therefore, the final velocity of the monkey is [tex]\(1.709 \, \text{m/s}\)[/tex].
### Step-by-Step Solution:
1. Identify the given values:
- Initial velocity ([tex]\(u\)[/tex]): 1.24 m/s
- Distance traveled ([tex]\(s\)[/tex]): 6.71 meters
- Time taken ([tex]\(t\)[/tex]): 4.55 seconds
2. Use the kinematic equation to find the acceleration ([tex]\(a\)[/tex]):
The equation relating distance, initial velocity, acceleration, and time is:
[tex]\[ s = ut + \frac{1}{2} a t^2 \][/tex]
Substitute the known values into the equation:
[tex]\[ 6.71 = (1.24 \cdot 4.55) + \frac{1}{2} a (4.55)^2 \][/tex]
3. Calculate the initial velocity component:
[tex]\[ (1.24 \times 4.55) = 5.642 \][/tex]
4. Isolate the term involving acceleration:
[tex]\[ 6.71 - 5.642 = \frac{1}{2} a (4.55)^2 \][/tex]
[tex]\[ 1.068 = \frac{1}{2} a (20.7025) \][/tex]
5. Solve for acceleration ([tex]\(a\)[/tex]):
[tex]\[ 1.068 = 10.35125a \][/tex]
[tex]\[ a = \frac{1.068}{10.35125} = 0.103 \][/tex]
6. Use the final velocity equation to find the final velocity ([tex]\(v_f\)[/tex]):
The equation relating final velocity, initial velocity, acceleration, and time is:
[tex]\[ v_f = u + a t \][/tex]
Substitute the known values:
[tex]\[ v_f = 1.24 + (0.103 \times 4.55) \][/tex]
7. Calculate the final velocity:
[tex]\[ v_f = 1.24 + 0.469 \][/tex]
[tex]\[ v_f = 1.709 \][/tex]
Therefore, the final velocity of the monkey is [tex]\(1.709 \, \text{m/s}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.