Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! To determine the final velocity of the monkey, we need to follow a step-by-step approach using physics principles, specifically kinematic equations.
### Step-by-Step Solution:
1. Identify the given values:
- Initial velocity ([tex]\(u\)[/tex]): 1.24 m/s
- Distance traveled ([tex]\(s\)[/tex]): 6.71 meters
- Time taken ([tex]\(t\)[/tex]): 4.55 seconds
2. Use the kinematic equation to find the acceleration ([tex]\(a\)[/tex]):
The equation relating distance, initial velocity, acceleration, and time is:
[tex]\[ s = ut + \frac{1}{2} a t^2 \][/tex]
Substitute the known values into the equation:
[tex]\[ 6.71 = (1.24 \cdot 4.55) + \frac{1}{2} a (4.55)^2 \][/tex]
3. Calculate the initial velocity component:
[tex]\[ (1.24 \times 4.55) = 5.642 \][/tex]
4. Isolate the term involving acceleration:
[tex]\[ 6.71 - 5.642 = \frac{1}{2} a (4.55)^2 \][/tex]
[tex]\[ 1.068 = \frac{1}{2} a (20.7025) \][/tex]
5. Solve for acceleration ([tex]\(a\)[/tex]):
[tex]\[ 1.068 = 10.35125a \][/tex]
[tex]\[ a = \frac{1.068}{10.35125} = 0.103 \][/tex]
6. Use the final velocity equation to find the final velocity ([tex]\(v_f\)[/tex]):
The equation relating final velocity, initial velocity, acceleration, and time is:
[tex]\[ v_f = u + a t \][/tex]
Substitute the known values:
[tex]\[ v_f = 1.24 + (0.103 \times 4.55) \][/tex]
7. Calculate the final velocity:
[tex]\[ v_f = 1.24 + 0.469 \][/tex]
[tex]\[ v_f = 1.709 \][/tex]
Therefore, the final velocity of the monkey is [tex]\(1.709 \, \text{m/s}\)[/tex].
### Step-by-Step Solution:
1. Identify the given values:
- Initial velocity ([tex]\(u\)[/tex]): 1.24 m/s
- Distance traveled ([tex]\(s\)[/tex]): 6.71 meters
- Time taken ([tex]\(t\)[/tex]): 4.55 seconds
2. Use the kinematic equation to find the acceleration ([tex]\(a\)[/tex]):
The equation relating distance, initial velocity, acceleration, and time is:
[tex]\[ s = ut + \frac{1}{2} a t^2 \][/tex]
Substitute the known values into the equation:
[tex]\[ 6.71 = (1.24 \cdot 4.55) + \frac{1}{2} a (4.55)^2 \][/tex]
3. Calculate the initial velocity component:
[tex]\[ (1.24 \times 4.55) = 5.642 \][/tex]
4. Isolate the term involving acceleration:
[tex]\[ 6.71 - 5.642 = \frac{1}{2} a (4.55)^2 \][/tex]
[tex]\[ 1.068 = \frac{1}{2} a (20.7025) \][/tex]
5. Solve for acceleration ([tex]\(a\)[/tex]):
[tex]\[ 1.068 = 10.35125a \][/tex]
[tex]\[ a = \frac{1.068}{10.35125} = 0.103 \][/tex]
6. Use the final velocity equation to find the final velocity ([tex]\(v_f\)[/tex]):
The equation relating final velocity, initial velocity, acceleration, and time is:
[tex]\[ v_f = u + a t \][/tex]
Substitute the known values:
[tex]\[ v_f = 1.24 + (0.103 \times 4.55) \][/tex]
7. Calculate the final velocity:
[tex]\[ v_f = 1.24 + 0.469 \][/tex]
[tex]\[ v_f = 1.709 \][/tex]
Therefore, the final velocity of the monkey is [tex]\(1.709 \, \text{m/s}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.