At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
### Step-by-Step Solution
#### Null Hypothesis
First, let's identify the appropriate null hypothesis for this experiment:
Null Hypothesis (H0): There is no difference in popularity among the three meals.
This means that under the null hypothesis, we assume that each type of meal is equally popular.
#### Calculate the Total Number of Orders
From the given data, we have:
- Fish orders: 48
- Beef orders: 46
- Chicken orders: 53
The total number of orders is the sum of these three quantities:
[tex]\[ \text{Total orders} = 48 + 46 + 53 = 147 \][/tex]
#### Expected Frequencies
Under the null hypothesis (equal popularity for each meal), the expected frequency for each category can be calculated by dividing the total number of orders by the number of meal categories (3):
[tex]\[ \text{Expected frequency for each category} = \frac{\text{Total orders}}{3} = \frac{147}{3} = 49 \][/tex]
Thus, the expected frequencies are:
[tex]\[ \begin{array}{ccc} \text{Fish} & \text{Beef} & \text{Chicken} \\ \hline 49 & 49 & 49 \\ \end{array} \][/tex]
#### Chi-Square Statistic
The chi-square statistic is calculated using the formula:
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency for each category.
Plugging in the observed and expected frequencies:
- For Fish:
[tex]\[ \frac{(48 - 49)^2}{49} = \frac{(-1)^2}{49} = \frac{1}{49} \][/tex]
- For Beef:
[tex]\[ \frac{(46 - 49)^2}{49} = \frac{(-3)^2}{49} = \frac{9}{49} \][/tex]
- For Chicken:
[tex]\[ \frac{(53 - 49)^2}{49} = \frac{4^2}{49} = \frac{16}{49} \][/tex]
Adding these values together gives:
[tex]\[ \chi^2 = \frac{1}{49} + \frac{9}{49} + \frac{16}{49} = \frac{1 + 9 + 16}{49} = \frac{26}{49} \approx 0.5306 \][/tex]
#### Summary
- Null Hypothesis: There is no difference in popularity among the three meals.
- Expected Frequencies:
[tex]\[ \begin{array}{ccc} \text{Fish} & \text{Beef} & \text{Chicken} \\ \hline 49 & 49 & 49 \\ \end{array} \][/tex]
- Chi-Square Statistic:
[tex]\[ \chi^2 \approx 0.5306 \][/tex]
Therefore:
- The appropriate null hypothesis is: There is no difference in popularity among the three meals.
- The completed expected frequencies table is:
[tex]\[ \begin{array}{ccc} \text{Fish} & \text{Beef} & \text{Chicken} \\ \hline 49 & 49 & 49 \\ \end{array} \][/tex]
- The chi-square statistic is [tex]\( \chi^2 \approx 0.5306 \)[/tex].
#### Null Hypothesis
First, let's identify the appropriate null hypothesis for this experiment:
Null Hypothesis (H0): There is no difference in popularity among the three meals.
This means that under the null hypothesis, we assume that each type of meal is equally popular.
#### Calculate the Total Number of Orders
From the given data, we have:
- Fish orders: 48
- Beef orders: 46
- Chicken orders: 53
The total number of orders is the sum of these three quantities:
[tex]\[ \text{Total orders} = 48 + 46 + 53 = 147 \][/tex]
#### Expected Frequencies
Under the null hypothesis (equal popularity for each meal), the expected frequency for each category can be calculated by dividing the total number of orders by the number of meal categories (3):
[tex]\[ \text{Expected frequency for each category} = \frac{\text{Total orders}}{3} = \frac{147}{3} = 49 \][/tex]
Thus, the expected frequencies are:
[tex]\[ \begin{array}{ccc} \text{Fish} & \text{Beef} & \text{Chicken} \\ \hline 49 & 49 & 49 \\ \end{array} \][/tex]
#### Chi-Square Statistic
The chi-square statistic is calculated using the formula:
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
where [tex]\( O_i \)[/tex] is the observed frequency and [tex]\( E_i \)[/tex] is the expected frequency for each category.
Plugging in the observed and expected frequencies:
- For Fish:
[tex]\[ \frac{(48 - 49)^2}{49} = \frac{(-1)^2}{49} = \frac{1}{49} \][/tex]
- For Beef:
[tex]\[ \frac{(46 - 49)^2}{49} = \frac{(-3)^2}{49} = \frac{9}{49} \][/tex]
- For Chicken:
[tex]\[ \frac{(53 - 49)^2}{49} = \frac{4^2}{49} = \frac{16}{49} \][/tex]
Adding these values together gives:
[tex]\[ \chi^2 = \frac{1}{49} + \frac{9}{49} + \frac{16}{49} = \frac{1 + 9 + 16}{49} = \frac{26}{49} \approx 0.5306 \][/tex]
#### Summary
- Null Hypothesis: There is no difference in popularity among the three meals.
- Expected Frequencies:
[tex]\[ \begin{array}{ccc} \text{Fish} & \text{Beef} & \text{Chicken} \\ \hline 49 & 49 & 49 \\ \end{array} \][/tex]
- Chi-Square Statistic:
[tex]\[ \chi^2 \approx 0.5306 \][/tex]
Therefore:
- The appropriate null hypothesis is: There is no difference in popularity among the three meals.
- The completed expected frequencies table is:
[tex]\[ \begin{array}{ccc} \text{Fish} & \text{Beef} & \text{Chicken} \\ \hline 49 & 49 & 49 \\ \end{array} \][/tex]
- The chi-square statistic is [tex]\( \chi^2 \approx 0.5306 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.