Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the slope [tex]\( m \)[/tex] of a line that intersects the points [tex]\((2,2)\)[/tex] and [tex]\((-1,20)\)[/tex], we use the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of the first point, [tex]\((2, 2)\)[/tex], and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the second point, [tex]\((-1, 20)\)[/tex].
Let's assign the coordinates to the respective variables:
- [tex]\( x_1 = 2 \)[/tex]
- [tex]\( y_1 = 2 \)[/tex]
- [tex]\( x_2 = -1 \)[/tex]
- [tex]\( y_2 = 20 \)[/tex]
Now, substitute these values into the slope formula:
[tex]\[ m = \frac{20 - 2}{-1 - 2} \][/tex]
Calculate the difference in the y-coordinates:
[tex]\[ 20 - 2 = 18 \][/tex]
Calculate the difference in the x-coordinates:
[tex]\[ -1 - 2 = -3 \][/tex]
Now, substitute these differences back into the slope formula:
[tex]\[ m = \frac{18}{-3} \][/tex]
Perform the division:
[tex]\[ m = -6 \][/tex]
Thus, the slope of the line in simplest form is:
[tex]\[ m = -6 \][/tex]
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of the first point, [tex]\((2, 2)\)[/tex], and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the second point, [tex]\((-1, 20)\)[/tex].
Let's assign the coordinates to the respective variables:
- [tex]\( x_1 = 2 \)[/tex]
- [tex]\( y_1 = 2 \)[/tex]
- [tex]\( x_2 = -1 \)[/tex]
- [tex]\( y_2 = 20 \)[/tex]
Now, substitute these values into the slope formula:
[tex]\[ m = \frac{20 - 2}{-1 - 2} \][/tex]
Calculate the difference in the y-coordinates:
[tex]\[ 20 - 2 = 18 \][/tex]
Calculate the difference in the x-coordinates:
[tex]\[ -1 - 2 = -3 \][/tex]
Now, substitute these differences back into the slope formula:
[tex]\[ m = \frac{18}{-3} \][/tex]
Perform the division:
[tex]\[ m = -6 \][/tex]
Thus, the slope of the line in simplest form is:
[tex]\[ m = -6 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.