Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the limit of the sequence
[tex]\[ d_n = \ln(n^2 + 5) - \ln(n^2 - 1) \][/tex]
as [tex]\( n \)[/tex] approaches infinity, follow these steps:
1. Apply properties of logarithms:
Recall the property of logarithms that states [tex]\( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \)[/tex]. Using this property, we can rewrite the sequence as:
[tex]\[ d_n = \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) \][/tex]
2. Analyze the expression inside the logarithm:
To gain insight into the behavior of the sequence as [tex]\( n \)[/tex] approaches infinity, consider the fraction inside the logarithm:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} \][/tex]
3. Simplify the fraction:
Divide both the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} = \frac{n^2/n^2 + 5/n^2}{n^2/n^2 - 1/n^2} = \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} \][/tex]
4. Take the limit as [tex]\( n \)[/tex] approaches infinity:
Observe that as [tex]\( n \)[/tex] grows larger and larger, the terms [tex]\( \frac{5}{n^2} \)[/tex] and [tex]\( \frac{1}{n^2} \)[/tex] approach zero:
[tex]\[ \lim_{n \rightarrow \infty} \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} = \frac{1 + 0}{1 - 0} = 1 \][/tex]
5. Apply the limit to the logarithm:
Now, we need to find the limit of the logarithm of this fraction as [tex]\( n \)[/tex] approaches infinity:
[tex]\[ \lim_{n \rightarrow \infty} \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) = \ln\left(\lim_{n \rightarrow \infty} \frac{n^2 + 5}{n^2 - 1}\right) = \ln(1) \][/tex]
6. Determine the final limit:
We know that [tex]\( \ln(1) = 0 \)[/tex].
Therefore, the limit of the sequence [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} d_n = 0 \][/tex]
Thus, the answer is [tex]\( \boxed{0} \)[/tex].
[tex]\[ d_n = \ln(n^2 + 5) - \ln(n^2 - 1) \][/tex]
as [tex]\( n \)[/tex] approaches infinity, follow these steps:
1. Apply properties of logarithms:
Recall the property of logarithms that states [tex]\( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \)[/tex]. Using this property, we can rewrite the sequence as:
[tex]\[ d_n = \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) \][/tex]
2. Analyze the expression inside the logarithm:
To gain insight into the behavior of the sequence as [tex]\( n \)[/tex] approaches infinity, consider the fraction inside the logarithm:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} \][/tex]
3. Simplify the fraction:
Divide both the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} = \frac{n^2/n^2 + 5/n^2}{n^2/n^2 - 1/n^2} = \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} \][/tex]
4. Take the limit as [tex]\( n \)[/tex] approaches infinity:
Observe that as [tex]\( n \)[/tex] grows larger and larger, the terms [tex]\( \frac{5}{n^2} \)[/tex] and [tex]\( \frac{1}{n^2} \)[/tex] approach zero:
[tex]\[ \lim_{n \rightarrow \infty} \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} = \frac{1 + 0}{1 - 0} = 1 \][/tex]
5. Apply the limit to the logarithm:
Now, we need to find the limit of the logarithm of this fraction as [tex]\( n \)[/tex] approaches infinity:
[tex]\[ \lim_{n \rightarrow \infty} \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) = \ln\left(\lim_{n \rightarrow \infty} \frac{n^2 + 5}{n^2 - 1}\right) = \ln(1) \][/tex]
6. Determine the final limit:
We know that [tex]\( \ln(1) = 0 \)[/tex].
Therefore, the limit of the sequence [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} d_n = 0 \][/tex]
Thus, the answer is [tex]\( \boxed{0} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.