Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Select the correct answer.

What is the sound level for a noise that has an intensity of [tex]$7.6 \times 10^{-4}$[/tex] watts [tex]$/ m^2[/tex]?

[tex]\left(\beta = 10 \log \left(\frac{I}{I_0}\right)\right)[/tex], [tex]\left(I_0 = 10^{-12}\right[/tex] watts [tex]/ m^2[/tex]).

A. 8.88 dB
B. 31.19 dB
C. 88.81 dB
D. 120 dB


Sagot :

To determine the sound level for a noise with an intensity of [tex]\( 7.6 \times 10^{-4} \)[/tex] watts/m², you can use the following formula for the sound level in decibels (dB):

[tex]\[ \beta = 10 \log \left( \frac{I}{I_0} \right) \][/tex]

where
- [tex]\(\beta\)[/tex] is the sound level in decibels,
- [tex]\(I\)[/tex] is the intensity of the sound, and
- [tex]\(I_0\)[/tex] is the reference intensity, typically [tex]\( 1 \times 10^{-12} \)[/tex] watts/m².

Let's plug in the values:
- [tex]\(I = 7.6 \times 10^{-4}\)[/tex] watts/m²,
- [tex]\(I_0 = 1 \times 10^{-12}\)[/tex] watts/m².

The formula becomes:
[tex]\[ \beta = 10 \log \left( \frac{7.6 \times 10^{-4}}{1 \times 10^{-12}} \right) \][/tex]

First, calculate the ratio [tex]\(\frac{I}{I_0}\)[/tex]:
[tex]\[ \frac{7.6 \times 10^{-4}}{1 \times 10^{-12}} = 7.6 \times 10^8 \][/tex]

Next, calculate the logarithm base 10 of the ratio:
[tex]\[ \log(7.6 \times 10^8) \][/tex]

The logarithm of a product can be broken down into the sum of logarithms:
[tex]\[ \log(7.6 \times 10^8) = \log(7.6) + \log(10^8) \][/tex]

Since [tex]\(\log(10^8) = 8\)[/tex]:
[tex]\[ \log(7.6 \times 10^8) = \log(7.6) + 8 \][/tex]

Now, we calculate [tex]\(\log(7.6)\)[/tex]:
[tex]\[ \log(7.6) \approx 0.880 \][/tex]

So:
[tex]\[ \log(7.6 \times 10^8) \approx 0.880 + 8 = 8.880 \][/tex]

Finally, we multiply by 10 to get the sound level in decibels:
[tex]\[ \beta = 10 \times 8.880 = 88.80 \, \text{dB} \][/tex]

The nearest answer from the given choices is:
C. 88.81 dB
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.