At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to understand joint variation. Since [tex]\( g \)[/tex] varies jointly with [tex]\( h \)[/tex] and [tex]\( j \)[/tex], we can write the relationship as:
[tex]\[ g = k \cdot h \cdot j \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
1. Find the constant [tex]\( k \)[/tex]:
We know that when [tex]\( h = \frac{1}{2} \)[/tex] and [tex]\( j = \frac{1}{3} \)[/tex], [tex]\( g = 4 \)[/tex]. Plugging these values into the equation gives us:
[tex]\[ 4 = k \cdot \frac{1}{2} \cdot \frac{1}{3} \][/tex]
Simplify the right side:
[tex]\[ 4 = k \cdot \frac{1}{6} \][/tex]
To isolate [tex]\( k \)[/tex], multiply both sides by 6:
[tex]\[ k = 4 \times 6 \][/tex]
[tex]\[ k = 24 \][/tex]
2. Use the constant [tex]\( k \)[/tex] to find the new [tex]\( g \)[/tex]:
Now, we need to find [tex]\( g \)[/tex] when [tex]\( h = 2 \)[/tex] and [tex]\( j = 3 \)[/tex]. Using the joint variation equation again:
[tex]\[ g = k \cdot h \cdot j \][/tex]
Substitute [tex]\( k = 24 \)[/tex], [tex]\( h = 2 \)[/tex], and [tex]\( j = 3 \)[/tex]:
[tex]\[ g = 24 \cdot 2 \cdot 3 \][/tex]
Simplify the expression:
[tex]\[ g = 24 \cdot 6 \][/tex]
[tex]\[ g = 144 \][/tex]
So, the value of [tex]\( g \)[/tex] when [tex]\( h = 2 \)[/tex] and [tex]\( j = 3 \)[/tex] is [tex]\( \boxed{144} \)[/tex].
[tex]\[ g = k \cdot h \cdot j \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
1. Find the constant [tex]\( k \)[/tex]:
We know that when [tex]\( h = \frac{1}{2} \)[/tex] and [tex]\( j = \frac{1}{3} \)[/tex], [tex]\( g = 4 \)[/tex]. Plugging these values into the equation gives us:
[tex]\[ 4 = k \cdot \frac{1}{2} \cdot \frac{1}{3} \][/tex]
Simplify the right side:
[tex]\[ 4 = k \cdot \frac{1}{6} \][/tex]
To isolate [tex]\( k \)[/tex], multiply both sides by 6:
[tex]\[ k = 4 \times 6 \][/tex]
[tex]\[ k = 24 \][/tex]
2. Use the constant [tex]\( k \)[/tex] to find the new [tex]\( g \)[/tex]:
Now, we need to find [tex]\( g \)[/tex] when [tex]\( h = 2 \)[/tex] and [tex]\( j = 3 \)[/tex]. Using the joint variation equation again:
[tex]\[ g = k \cdot h \cdot j \][/tex]
Substitute [tex]\( k = 24 \)[/tex], [tex]\( h = 2 \)[/tex], and [tex]\( j = 3 \)[/tex]:
[tex]\[ g = 24 \cdot 2 \cdot 3 \][/tex]
Simplify the expression:
[tex]\[ g = 24 \cdot 6 \][/tex]
[tex]\[ g = 144 \][/tex]
So, the value of [tex]\( g \)[/tex] when [tex]\( h = 2 \)[/tex] and [tex]\( j = 3 \)[/tex] is [tex]\( \boxed{144} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.