Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the probability that a four-digit code starts with a number greater than 7, we need to calculate the number of favorable outcomes and divide it by the total number of possible outcomes.
### Step 1: Total Number of Possible 4-Digit Codes
Since the digits in the code range from 0 to 9 and cannot be repeated, we can use permutations to calculate the total number of 4-digit codes:
[tex]\[ _{10}P_{4} \text{(Permutations of 4 digits out of 10)} \][/tex]
[tex]\[ = \frac{10!}{(10-4)!} = \frac{10!}{6!} = 10 \times 9 \times 8 \times 7 = 5040 \][/tex]
### Step 2: Number of Choices for the First Digit Greater than 7
Digits greater than 7 are 8 and 9, giving us:
[tex]\[ 2 \text{ choices for the first digit} \][/tex]
### Step 3: Number of Choices for the Remaining 3 Digits
Once the first digit is chosen, we have 9 digits left, and we need to choose 3 of them. The number of ways to choose 3 digits from 9 (without regard for order) is:
[tex]\[ _{9}P_{3} \text{(Permutations of 3 digits out of 9)} \][/tex]
[tex]\[ = \frac{9!}{(9-3)!} = \frac{9!}{6!} = 9 \times 8 \times 7 = 504 \][/tex]
### Step 4: Total Number of Favorable 4-Digit Combinations
The number of favorable outcomes where the first digit is greater than 7 can be calculated by multiplying the number of choices for the first digit by the number of choices for the remaining digits:
[tex]\[ \text{Total favorable combinations} = 2 \times 504 \][/tex]
### Step 5: Probability Calculation
Finally, the probability is the ratio of the number of favorable outcomes to the total number of possible outcomes:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable combinations}}{\text{Total number of possible combinations}} \][/tex]
[tex]\[ = \frac{2 \times 504}{5040} = 0.2 \][/tex]
So the expression that can be used to determine this probability is:
[tex]\[ \frac{\left({ }_2 P_1\right)\left({ }_9 P_3\right)}{10 P_4} \][/tex]
Therefore, the correct option is:
[tex]\[ (-) \frac{\left({ }_2 P_1\right)\left({ }_9 P_3\right)}{10 P_4} \][/tex]
### Step 1: Total Number of Possible 4-Digit Codes
Since the digits in the code range from 0 to 9 and cannot be repeated, we can use permutations to calculate the total number of 4-digit codes:
[tex]\[ _{10}P_{4} \text{(Permutations of 4 digits out of 10)} \][/tex]
[tex]\[ = \frac{10!}{(10-4)!} = \frac{10!}{6!} = 10 \times 9 \times 8 \times 7 = 5040 \][/tex]
### Step 2: Number of Choices for the First Digit Greater than 7
Digits greater than 7 are 8 and 9, giving us:
[tex]\[ 2 \text{ choices for the first digit} \][/tex]
### Step 3: Number of Choices for the Remaining 3 Digits
Once the first digit is chosen, we have 9 digits left, and we need to choose 3 of them. The number of ways to choose 3 digits from 9 (without regard for order) is:
[tex]\[ _{9}P_{3} \text{(Permutations of 3 digits out of 9)} \][/tex]
[tex]\[ = \frac{9!}{(9-3)!} = \frac{9!}{6!} = 9 \times 8 \times 7 = 504 \][/tex]
### Step 4: Total Number of Favorable 4-Digit Combinations
The number of favorable outcomes where the first digit is greater than 7 can be calculated by multiplying the number of choices for the first digit by the number of choices for the remaining digits:
[tex]\[ \text{Total favorable combinations} = 2 \times 504 \][/tex]
### Step 5: Probability Calculation
Finally, the probability is the ratio of the number of favorable outcomes to the total number of possible outcomes:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable combinations}}{\text{Total number of possible combinations}} \][/tex]
[tex]\[ = \frac{2 \times 504}{5040} = 0.2 \][/tex]
So the expression that can be used to determine this probability is:
[tex]\[ \frac{\left({ }_2 P_1\right)\left({ }_9 P_3\right)}{10 P_4} \][/tex]
Therefore, the correct option is:
[tex]\[ (-) \frac{\left({ }_2 P_1\right)\left({ }_9 P_3\right)}{10 P_4} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.