Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the expression [tex]\(\left(\frac{216}{2197}\right)^{-\frac{2}{3}}\)[/tex], follow these steps:
1. Understand the negative exponent:
The negative exponent [tex]\(-\frac{2}{3}\)[/tex] indicates that we need to take the reciprocal of the base and then raise it to the power of [tex]\(\frac{2}{3}\)[/tex].
[tex]\[ \left(\frac{a}{b}\right)^{-\frac{2}{3}} = \left(\frac{b}{a}\right)^{\frac{2}{3}} \][/tex]
Therefore, [tex]\(\left(\frac{216}{2197}\right)^{-\frac{2}{3}}\)[/tex] can be rewritten as [tex]\(\left(\frac{2197}{216}\right)^{\frac{2}{3}}\)[/tex].
2. Cube root and square the result:
The exponent of [tex]\(\frac{2}{3}\)[/tex] can be split into two parts: the cube root and squaring. Thus, we first take the cube root of [tex]\(\frac{2197}{216}\)[/tex], and then square the result.
Let's find the cube root first:
- The cube root of 2197 is 13, because [tex]\(13^3 = 2197\)[/tex].
- The cube root of 216 is 6, because [tex]\(6^3 = 216\)[/tex].
Therefore,
[tex]\[ \sqrt[3]{\frac{2197}{216}} = \frac{13}{6} \][/tex]
3. Square the result:
Now, we need to square [tex]\(\frac{13}{6}\)[/tex]:
[tex]\[ \left(\frac{13}{6}\right)^2 = \frac{13^2}{6^2} = \frac{169}{36} \][/tex]
Thus, the expression [tex]\(\left(\frac{216}{2197}\right)^{-\frac{2}{3}}\)[/tex] evaluates to [tex]\(\frac{169}{36}\)[/tex]. Since this fraction is in its simplest form, no further simplification is needed.
Hence, the final simplified fractional answer is:
[tex]\[ \boxed{\frac{169}{36}} \][/tex]
1. Understand the negative exponent:
The negative exponent [tex]\(-\frac{2}{3}\)[/tex] indicates that we need to take the reciprocal of the base and then raise it to the power of [tex]\(\frac{2}{3}\)[/tex].
[tex]\[ \left(\frac{a}{b}\right)^{-\frac{2}{3}} = \left(\frac{b}{a}\right)^{\frac{2}{3}} \][/tex]
Therefore, [tex]\(\left(\frac{216}{2197}\right)^{-\frac{2}{3}}\)[/tex] can be rewritten as [tex]\(\left(\frac{2197}{216}\right)^{\frac{2}{3}}\)[/tex].
2. Cube root and square the result:
The exponent of [tex]\(\frac{2}{3}\)[/tex] can be split into two parts: the cube root and squaring. Thus, we first take the cube root of [tex]\(\frac{2197}{216}\)[/tex], and then square the result.
Let's find the cube root first:
- The cube root of 2197 is 13, because [tex]\(13^3 = 2197\)[/tex].
- The cube root of 216 is 6, because [tex]\(6^3 = 216\)[/tex].
Therefore,
[tex]\[ \sqrt[3]{\frac{2197}{216}} = \frac{13}{6} \][/tex]
3. Square the result:
Now, we need to square [tex]\(\frac{13}{6}\)[/tex]:
[tex]\[ \left(\frac{13}{6}\right)^2 = \frac{13^2}{6^2} = \frac{169}{36} \][/tex]
Thus, the expression [tex]\(\left(\frac{216}{2197}\right)^{-\frac{2}{3}}\)[/tex] evaluates to [tex]\(\frac{169}{36}\)[/tex]. Since this fraction is in its simplest form, no further simplification is needed.
Hence, the final simplified fractional answer is:
[tex]\[ \boxed{\frac{169}{36}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.