Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which option is not a correct way to rewrite the expression [tex]\((4x^2 + 3x - 7)(x - 2)\)[/tex] using the distributive property, let's analyze each option in detail.
### Option A:
[tex]\[ (4x^2 + 3x - 7)(x) + (4x^2 + 3x - 7)(-2) \][/tex]
This option distributes the expression [tex]\((4x^2 + 3x - 7)\)[/tex] over both [tex]\(x\)[/tex] and [tex]\(-2\)[/tex]. This is a correct use of the distributive property.
### Option B:
[tex]\[ (4x^2)(x) + (4x^2)(-2) + (3x)(x) + (3x)(-2) + (-7)(x) + (-7)(-2) \][/tex]
This option breaks the original expression down into separate terms and distributes each term individually over [tex]\(x\)[/tex] and [tex]\(-2\)[/tex]. This is also a correct application of the distributive property.
### Option C:
[tex]\[ (4x^2)(x - 2) + (3x)(x - 2) + (-7)(x - 2) \][/tex]
This option groups the original expression into three parts [tex]\((4x^2)\)[/tex], [tex]\((3x)\)[/tex], and [tex]\((-7)\)[/tex], and then distributes each part over [tex]\((x - 2)\)[/tex]. This is another correct use of the distributive property.
### Option D:
[tex]\[ (4x^2 + 3x - 7)(x) + (4x^2 + 3x - 7)(x - 2) \][/tex]
In this option, the original expression [tex]\((4x^2 + 3x - 7)\)[/tex] is distributed over both [tex]\(x\)[/tex] and [tex]\((x - 2)\)[/tex] separately. However, when we combine these into a single expression, it does not align correctly with the distributive property because it does not factor out the common [tex]\((x - 2)\)[/tex] term properly.
Therefore, the incorrect option is:
[tex]\[ \boxed{D} \][/tex]
### Option A:
[tex]\[ (4x^2 + 3x - 7)(x) + (4x^2 + 3x - 7)(-2) \][/tex]
This option distributes the expression [tex]\((4x^2 + 3x - 7)\)[/tex] over both [tex]\(x\)[/tex] and [tex]\(-2\)[/tex]. This is a correct use of the distributive property.
### Option B:
[tex]\[ (4x^2)(x) + (4x^2)(-2) + (3x)(x) + (3x)(-2) + (-7)(x) + (-7)(-2) \][/tex]
This option breaks the original expression down into separate terms and distributes each term individually over [tex]\(x\)[/tex] and [tex]\(-2\)[/tex]. This is also a correct application of the distributive property.
### Option C:
[tex]\[ (4x^2)(x - 2) + (3x)(x - 2) + (-7)(x - 2) \][/tex]
This option groups the original expression into three parts [tex]\((4x^2)\)[/tex], [tex]\((3x)\)[/tex], and [tex]\((-7)\)[/tex], and then distributes each part over [tex]\((x - 2)\)[/tex]. This is another correct use of the distributive property.
### Option D:
[tex]\[ (4x^2 + 3x - 7)(x) + (4x^2 + 3x - 7)(x - 2) \][/tex]
In this option, the original expression [tex]\((4x^2 + 3x - 7)\)[/tex] is distributed over both [tex]\(x\)[/tex] and [tex]\((x - 2)\)[/tex] separately. However, when we combine these into a single expression, it does not align correctly with the distributive property because it does not factor out the common [tex]\((x - 2)\)[/tex] term properly.
Therefore, the incorrect option is:
[tex]\[ \boxed{D} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.