Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Martin wants to use coordinate geometry to prove that the opposite sides of a rectangle are congruent. He places parallelogram [tex]$A B C D$[/tex] in the coordinate plane so that [tex]$A$[/tex] is [tex]$(0,0)$[/tex], [tex]$B$[/tex] is [tex]$(a, 0)$[/tex], [tex]$C$[/tex] is [tex]$(a, b)$[/tex], and [tex]$D$[/tex] is [tex]$(0, b)$[/tex].

What formula can he use to determine the distance from point [tex]$D$[/tex] to point [tex]$A$[/tex]?

A. [tex]$(0-0)^2+(b-0)^2=b^2$[/tex]

B. [tex]$\sqrt{(a-a)^2+(b-0)^2}=\sqrt{b^2}=b$[/tex]

C. [tex]$(a-a)^2+(b-0)^2=b^2$[/tex]

D. [tex]$\sqrt{(0-0)^2+(b-0)^2}=\sqrt{b^2}=b$[/tex]


Sagot :

To determine the distance from point [tex]\(D\)[/tex] [tex]\((0, b)\)[/tex] to point [tex]\(A\)[/tex] [tex]\((0, 0)\)[/tex] in the coordinate plane, we can use the distance formula, which is given by:

[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

For points [tex]\(A\)[/tex] [tex]\((0, 0)\)[/tex] and [tex]\(D\)[/tex] [tex]\((0, b)\)[/tex]:
- [tex]\(x_1 = 0\)[/tex], [tex]\(y_1 = 0\)[/tex]
- [tex]\(x_2 = 0\)[/tex], [tex]\(y_2 = b\)[/tex]

Plugging the coordinates into the distance formula:

[tex]\[ \text{Distance} = \sqrt{(0 - 0)^2 + (b - 0)^2} \][/tex]

Simplify the expression inside the square root:

[tex]\[ \text{Distance} = \sqrt{0 + b^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{b^2} \][/tex]
[tex]\[ \text{Distance} = b \][/tex]

Therefore, the correct formula to determine the distance from point [tex]\(D\)[/tex] to point [tex]\(A\)[/tex] is:

[tex]\[ \text{Distance} = \sqrt{(0-0)^2+(b-0)^2} = \sqrt{b^2} = b \][/tex]

Thus, the correct choice is:

D. [tex]\(\sqrt{(0-0)^2+(b-0)^2}=\sqrt{b^2}=b\)[/tex]