Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To design an input-output machine, we need to establish the relationship between the input values ([tex]\( x \)[/tex]) and the output values ([tex]\( y \)[/tex]). Based on the given data for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we can derive the rule.
The table provided is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \hline y & 4 & 10 & 16 & 22 & 28 & 34 & 40 \\ \hline \end{array} \][/tex]
1. Analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Let's look at the pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex], [tex]\( y = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex], [tex]\( y = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex], [tex]\( y = 40 \)[/tex]
2. Find a pattern:
To identify the rule, we observe how [tex]\( y \)[/tex] changes with respect to [tex]\( x \)[/tex]. Let's identify the differences:
- [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is 4.
- [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is 10.
- [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is 16.
- [tex]\( y \)[/tex] when [tex]\( x = 7 \)[/tex] is 22.
- [tex]\( y \)[/tex] when [tex]\( x = 9 \)[/tex] is 28.
- [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is 34.
- [tex]\( y \)[/tex] when [tex]\( x = 13 \)[/tex] is 40.
Notice the differences in [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is increased by 2 each time:
- [tex]\( y (x = 3) - y (x = 1) = 10 - 4 = 6 \)[/tex]
- [tex]\( y (x = 5) - y (x = 3) = 16 - 10 = 6 \)[/tex]
- [tex]\( y (x = 7) - y (x = 5) = 22 - 16 = 6 \)[/tex]
- [tex]\( y (x = 9) - y (x = 7) = 28 - 22 = 6 \)[/tex]
- [tex]\( y (x = 11) - y (x = 9) = 34 - 28 = 6 \)[/tex]
- [tex]\( y (x = 13) - y (x = 11) = 40 - 34 = 6 \)[/tex]
The output [tex]\( y \)[/tex] increases by 6 for each increase of 2 in [tex]\( x \)[/tex]. This suggests a linear relationship of the form [tex]\( y = ax + b \)[/tex].
3. Formulate the equation:
From the pattern observed, we deduce that for every increase by 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value increases by half of 6, which is 3.
Let's check if [tex]\( y = 3x + c \)[/tex] fits:
- When [tex]\( x = 1 \)[/tex]:
[tex]\( 4 = 3(1) + c \)[/tex] --> [tex]\( c = 4 - 3 = 1 \)[/tex]
Hence, the equation can be written as:
[tex]\( y = 3x + 1 \)[/tex]
4. Verify the rule:
Let's verify this rule using the given pairs:
- When [tex]\( x = 1 \)[/tex]: [tex]\( y = 3(1) + 1 = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex]: [tex]\( y = 3(3) + 1 = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex]: [tex]\( y = 3(5) + 1 = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex]: [tex]\( y = 3(7) + 1 = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex]: [tex]\( y = 3(9) + 1 = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex]: [tex]\( y = 3(11) + 1 = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex]: [tex]\( y = 3(13) + 1 = 40 \)[/tex]
All values fit the equation perfectly.
Therefore, the rule for the input-output machine is: [tex]\( y = 3x + 1 \)[/tex].
The table provided is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \hline y & 4 & 10 & 16 & 22 & 28 & 34 & 40 \\ \hline \end{array} \][/tex]
1. Analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Let's look at the pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex], [tex]\( y = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex], [tex]\( y = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex], [tex]\( y = 40 \)[/tex]
2. Find a pattern:
To identify the rule, we observe how [tex]\( y \)[/tex] changes with respect to [tex]\( x \)[/tex]. Let's identify the differences:
- [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is 4.
- [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is 10.
- [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is 16.
- [tex]\( y \)[/tex] when [tex]\( x = 7 \)[/tex] is 22.
- [tex]\( y \)[/tex] when [tex]\( x = 9 \)[/tex] is 28.
- [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is 34.
- [tex]\( y \)[/tex] when [tex]\( x = 13 \)[/tex] is 40.
Notice the differences in [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is increased by 2 each time:
- [tex]\( y (x = 3) - y (x = 1) = 10 - 4 = 6 \)[/tex]
- [tex]\( y (x = 5) - y (x = 3) = 16 - 10 = 6 \)[/tex]
- [tex]\( y (x = 7) - y (x = 5) = 22 - 16 = 6 \)[/tex]
- [tex]\( y (x = 9) - y (x = 7) = 28 - 22 = 6 \)[/tex]
- [tex]\( y (x = 11) - y (x = 9) = 34 - 28 = 6 \)[/tex]
- [tex]\( y (x = 13) - y (x = 11) = 40 - 34 = 6 \)[/tex]
The output [tex]\( y \)[/tex] increases by 6 for each increase of 2 in [tex]\( x \)[/tex]. This suggests a linear relationship of the form [tex]\( y = ax + b \)[/tex].
3. Formulate the equation:
From the pattern observed, we deduce that for every increase by 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value increases by half of 6, which is 3.
Let's check if [tex]\( y = 3x + c \)[/tex] fits:
- When [tex]\( x = 1 \)[/tex]:
[tex]\( 4 = 3(1) + c \)[/tex] --> [tex]\( c = 4 - 3 = 1 \)[/tex]
Hence, the equation can be written as:
[tex]\( y = 3x + 1 \)[/tex]
4. Verify the rule:
Let's verify this rule using the given pairs:
- When [tex]\( x = 1 \)[/tex]: [tex]\( y = 3(1) + 1 = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex]: [tex]\( y = 3(3) + 1 = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex]: [tex]\( y = 3(5) + 1 = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex]: [tex]\( y = 3(7) + 1 = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex]: [tex]\( y = 3(9) + 1 = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex]: [tex]\( y = 3(11) + 1 = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex]: [tex]\( y = 3(13) + 1 = 40 \)[/tex]
All values fit the equation perfectly.
Therefore, the rule for the input-output machine is: [tex]\( y = 3x + 1 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.