Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To design an input-output machine, we need to establish the relationship between the input values ([tex]\( x \)[/tex]) and the output values ([tex]\( y \)[/tex]). Based on the given data for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we can derive the rule.
The table provided is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \hline y & 4 & 10 & 16 & 22 & 28 & 34 & 40 \\ \hline \end{array} \][/tex]
1. Analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Let's look at the pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex], [tex]\( y = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex], [tex]\( y = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex], [tex]\( y = 40 \)[/tex]
2. Find a pattern:
To identify the rule, we observe how [tex]\( y \)[/tex] changes with respect to [tex]\( x \)[/tex]. Let's identify the differences:
- [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is 4.
- [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is 10.
- [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is 16.
- [tex]\( y \)[/tex] when [tex]\( x = 7 \)[/tex] is 22.
- [tex]\( y \)[/tex] when [tex]\( x = 9 \)[/tex] is 28.
- [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is 34.
- [tex]\( y \)[/tex] when [tex]\( x = 13 \)[/tex] is 40.
Notice the differences in [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is increased by 2 each time:
- [tex]\( y (x = 3) - y (x = 1) = 10 - 4 = 6 \)[/tex]
- [tex]\( y (x = 5) - y (x = 3) = 16 - 10 = 6 \)[/tex]
- [tex]\( y (x = 7) - y (x = 5) = 22 - 16 = 6 \)[/tex]
- [tex]\( y (x = 9) - y (x = 7) = 28 - 22 = 6 \)[/tex]
- [tex]\( y (x = 11) - y (x = 9) = 34 - 28 = 6 \)[/tex]
- [tex]\( y (x = 13) - y (x = 11) = 40 - 34 = 6 \)[/tex]
The output [tex]\( y \)[/tex] increases by 6 for each increase of 2 in [tex]\( x \)[/tex]. This suggests a linear relationship of the form [tex]\( y = ax + b \)[/tex].
3. Formulate the equation:
From the pattern observed, we deduce that for every increase by 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value increases by half of 6, which is 3.
Let's check if [tex]\( y = 3x + c \)[/tex] fits:
- When [tex]\( x = 1 \)[/tex]:
[tex]\( 4 = 3(1) + c \)[/tex] --> [tex]\( c = 4 - 3 = 1 \)[/tex]
Hence, the equation can be written as:
[tex]\( y = 3x + 1 \)[/tex]
4. Verify the rule:
Let's verify this rule using the given pairs:
- When [tex]\( x = 1 \)[/tex]: [tex]\( y = 3(1) + 1 = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex]: [tex]\( y = 3(3) + 1 = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex]: [tex]\( y = 3(5) + 1 = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex]: [tex]\( y = 3(7) + 1 = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex]: [tex]\( y = 3(9) + 1 = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex]: [tex]\( y = 3(11) + 1 = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex]: [tex]\( y = 3(13) + 1 = 40 \)[/tex]
All values fit the equation perfectly.
Therefore, the rule for the input-output machine is: [tex]\( y = 3x + 1 \)[/tex].
The table provided is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \hline y & 4 & 10 & 16 & 22 & 28 & 34 & 40 \\ \hline \end{array} \][/tex]
1. Analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Let's look at the pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex], [tex]\( y = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex], [tex]\( y = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex], [tex]\( y = 40 \)[/tex]
2. Find a pattern:
To identify the rule, we observe how [tex]\( y \)[/tex] changes with respect to [tex]\( x \)[/tex]. Let's identify the differences:
- [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is 4.
- [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is 10.
- [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is 16.
- [tex]\( y \)[/tex] when [tex]\( x = 7 \)[/tex] is 22.
- [tex]\( y \)[/tex] when [tex]\( x = 9 \)[/tex] is 28.
- [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is 34.
- [tex]\( y \)[/tex] when [tex]\( x = 13 \)[/tex] is 40.
Notice the differences in [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is increased by 2 each time:
- [tex]\( y (x = 3) - y (x = 1) = 10 - 4 = 6 \)[/tex]
- [tex]\( y (x = 5) - y (x = 3) = 16 - 10 = 6 \)[/tex]
- [tex]\( y (x = 7) - y (x = 5) = 22 - 16 = 6 \)[/tex]
- [tex]\( y (x = 9) - y (x = 7) = 28 - 22 = 6 \)[/tex]
- [tex]\( y (x = 11) - y (x = 9) = 34 - 28 = 6 \)[/tex]
- [tex]\( y (x = 13) - y (x = 11) = 40 - 34 = 6 \)[/tex]
The output [tex]\( y \)[/tex] increases by 6 for each increase of 2 in [tex]\( x \)[/tex]. This suggests a linear relationship of the form [tex]\( y = ax + b \)[/tex].
3. Formulate the equation:
From the pattern observed, we deduce that for every increase by 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value increases by half of 6, which is 3.
Let's check if [tex]\( y = 3x + c \)[/tex] fits:
- When [tex]\( x = 1 \)[/tex]:
[tex]\( 4 = 3(1) + c \)[/tex] --> [tex]\( c = 4 - 3 = 1 \)[/tex]
Hence, the equation can be written as:
[tex]\( y = 3x + 1 \)[/tex]
4. Verify the rule:
Let's verify this rule using the given pairs:
- When [tex]\( x = 1 \)[/tex]: [tex]\( y = 3(1) + 1 = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex]: [tex]\( y = 3(3) + 1 = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex]: [tex]\( y = 3(5) + 1 = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex]: [tex]\( y = 3(7) + 1 = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex]: [tex]\( y = 3(9) + 1 = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex]: [tex]\( y = 3(11) + 1 = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex]: [tex]\( y = 3(13) + 1 = 40 \)[/tex]
All values fit the equation perfectly.
Therefore, the rule for the input-output machine is: [tex]\( y = 3x + 1 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.