Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To design an input-output machine, we need to establish the relationship between the input values ([tex]\( x \)[/tex]) and the output values ([tex]\( y \)[/tex]). Based on the given data for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we can derive the rule.
The table provided is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \hline y & 4 & 10 & 16 & 22 & 28 & 34 & 40 \\ \hline \end{array} \][/tex]
1. Analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Let's look at the pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex], [tex]\( y = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex], [tex]\( y = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex], [tex]\( y = 40 \)[/tex]
2. Find a pattern:
To identify the rule, we observe how [tex]\( y \)[/tex] changes with respect to [tex]\( x \)[/tex]. Let's identify the differences:
- [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is 4.
- [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is 10.
- [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is 16.
- [tex]\( y \)[/tex] when [tex]\( x = 7 \)[/tex] is 22.
- [tex]\( y \)[/tex] when [tex]\( x = 9 \)[/tex] is 28.
- [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is 34.
- [tex]\( y \)[/tex] when [tex]\( x = 13 \)[/tex] is 40.
Notice the differences in [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is increased by 2 each time:
- [tex]\( y (x = 3) - y (x = 1) = 10 - 4 = 6 \)[/tex]
- [tex]\( y (x = 5) - y (x = 3) = 16 - 10 = 6 \)[/tex]
- [tex]\( y (x = 7) - y (x = 5) = 22 - 16 = 6 \)[/tex]
- [tex]\( y (x = 9) - y (x = 7) = 28 - 22 = 6 \)[/tex]
- [tex]\( y (x = 11) - y (x = 9) = 34 - 28 = 6 \)[/tex]
- [tex]\( y (x = 13) - y (x = 11) = 40 - 34 = 6 \)[/tex]
The output [tex]\( y \)[/tex] increases by 6 for each increase of 2 in [tex]\( x \)[/tex]. This suggests a linear relationship of the form [tex]\( y = ax + b \)[/tex].
3. Formulate the equation:
From the pattern observed, we deduce that for every increase by 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value increases by half of 6, which is 3.
Let's check if [tex]\( y = 3x + c \)[/tex] fits:
- When [tex]\( x = 1 \)[/tex]:
[tex]\( 4 = 3(1) + c \)[/tex] --> [tex]\( c = 4 - 3 = 1 \)[/tex]
Hence, the equation can be written as:
[tex]\( y = 3x + 1 \)[/tex]
4. Verify the rule:
Let's verify this rule using the given pairs:
- When [tex]\( x = 1 \)[/tex]: [tex]\( y = 3(1) + 1 = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex]: [tex]\( y = 3(3) + 1 = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex]: [tex]\( y = 3(5) + 1 = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex]: [tex]\( y = 3(7) + 1 = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex]: [tex]\( y = 3(9) + 1 = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex]: [tex]\( y = 3(11) + 1 = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex]: [tex]\( y = 3(13) + 1 = 40 \)[/tex]
All values fit the equation perfectly.
Therefore, the rule for the input-output machine is: [tex]\( y = 3x + 1 \)[/tex].
The table provided is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \hline y & 4 & 10 & 16 & 22 & 28 & 34 & 40 \\ \hline \end{array} \][/tex]
1. Analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
Let's look at the pairs of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- When [tex]\( x = 1 \)[/tex], [tex]\( y = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex], [tex]\( y = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex], [tex]\( y = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex], [tex]\( y = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex], [tex]\( y = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex], [tex]\( y = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex], [tex]\( y = 40 \)[/tex]
2. Find a pattern:
To identify the rule, we observe how [tex]\( y \)[/tex] changes with respect to [tex]\( x \)[/tex]. Let's identify the differences:
- [tex]\( y \)[/tex] when [tex]\( x = 1 \)[/tex] is 4.
- [tex]\( y \)[/tex] when [tex]\( x = 3 \)[/tex] is 10.
- [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is 16.
- [tex]\( y \)[/tex] when [tex]\( x = 7 \)[/tex] is 22.
- [tex]\( y \)[/tex] when [tex]\( x = 9 \)[/tex] is 28.
- [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is 34.
- [tex]\( y \)[/tex] when [tex]\( x = 13 \)[/tex] is 40.
Notice the differences in [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is increased by 2 each time:
- [tex]\( y (x = 3) - y (x = 1) = 10 - 4 = 6 \)[/tex]
- [tex]\( y (x = 5) - y (x = 3) = 16 - 10 = 6 \)[/tex]
- [tex]\( y (x = 7) - y (x = 5) = 22 - 16 = 6 \)[/tex]
- [tex]\( y (x = 9) - y (x = 7) = 28 - 22 = 6 \)[/tex]
- [tex]\( y (x = 11) - y (x = 9) = 34 - 28 = 6 \)[/tex]
- [tex]\( y (x = 13) - y (x = 11) = 40 - 34 = 6 \)[/tex]
The output [tex]\( y \)[/tex] increases by 6 for each increase of 2 in [tex]\( x \)[/tex]. This suggests a linear relationship of the form [tex]\( y = ax + b \)[/tex].
3. Formulate the equation:
From the pattern observed, we deduce that for every increase by 1 in [tex]\( x \)[/tex], the [tex]\( y \)[/tex]-value increases by half of 6, which is 3.
Let's check if [tex]\( y = 3x + c \)[/tex] fits:
- When [tex]\( x = 1 \)[/tex]:
[tex]\( 4 = 3(1) + c \)[/tex] --> [tex]\( c = 4 - 3 = 1 \)[/tex]
Hence, the equation can be written as:
[tex]\( y = 3x + 1 \)[/tex]
4. Verify the rule:
Let's verify this rule using the given pairs:
- When [tex]\( x = 1 \)[/tex]: [tex]\( y = 3(1) + 1 = 4 \)[/tex]
- When [tex]\( x = 3 \)[/tex]: [tex]\( y = 3(3) + 1 = 10 \)[/tex]
- When [tex]\( x = 5 \)[/tex]: [tex]\( y = 3(5) + 1 = 16 \)[/tex]
- When [tex]\( x = 7 \)[/tex]: [tex]\( y = 3(7) + 1 = 22 \)[/tex]
- When [tex]\( x = 9 \)[/tex]: [tex]\( y = 3(9) + 1 = 28 \)[/tex]
- When [tex]\( x = 11 \)[/tex]: [tex]\( y = 3(11) + 1 = 34 \)[/tex]
- When [tex]\( x = 13 \)[/tex]: [tex]\( y = 3(13) + 1 = 40 \)[/tex]
All values fit the equation perfectly.
Therefore, the rule for the input-output machine is: [tex]\( y = 3x + 1 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.