Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which equations have one solution, infinitely many solutions, or no solution, we will analyze each equation step by step.
1. Equation 1: [tex]\(\frac{1}{2} y + 3.2 y = 20\)[/tex]
Combine like terms:
[tex]\[ \left(\frac{1}{2} + 3.2\right)y = 20 \implies \left(\frac{1}{2} + \frac{32}{10}\right) y = 20 \implies \left(\frac{1}{2} + \frac{16}{5}\right)y = 20 \implies \left(\frac{5 + 32}{10}\right)y = 20 \implies \frac{37}{10}y = 20 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{20 \times 10}{37} \implies y = \frac{200}{37} \][/tex]
Thus, this equation has One Solution.
2. Equation 2: [tex]\(\frac{15}{2} + 2z - \frac{1}{4} = 4z + \frac{29}{4} - 2z\)[/tex]
Combine like terms:
[tex]\[ \frac{15}{2} - \frac{1}{4} + 2z = 2z + \frac{29}{4} \][/tex]
Simplify the constants:
[tex]\[ \frac{30}{4} - \frac{1}{4} + 2z = 2z + \frac{29}{4} \implies \frac{29}{4} + 2z = 2z + \frac{29}{4} \][/tex]
Since the terms on both sides are identical, the equation always holds true, regardless of [tex]\( z \)[/tex]. Thus, this equation has Infinitely Many Solutions.
3. Equation 3: [tex]\(3z + 2.5 = 3.2 + 3z\)[/tex]
Subtract [tex]\( 3z \)[/tex] from both sides:
[tex]\[ 2.5 = 3.2 \][/tex]
This is a contradiction, so the equation has No Solution.
4. Equation 4: [tex]\(1.1 + \frac{3}{4} x + 2 = 3.1 + \frac{3}{4} x\)[/tex]
Combine like terms:
[tex]\[ 1.1 + 2 + \frac{3}{4} x = 3.1 + \frac{3}{4} x \implies 3.1 + \frac{3}{4} x = 3.1 + \frac{3}{4} x \][/tex]
Since the terms on both sides are identical, the equation always holds true, regardless of [tex]\( x \)[/tex]. Thus, this equation has Infinitely Many Solutions.
5. Equation 5: [tex]\(4.5r = 3.2 + 4.5r\)[/tex]
Subtract [tex]\( 4.5r \)[/tex] from both sides:
[tex]\[ 0 = 3.2 \][/tex]
This is a contradiction, so the equation has No Solution.
6. Equation 6: [tex]\(2x + 4 = 3x + \frac{1}{2}\)[/tex]
Subtract [tex]\( 2x \)[/tex] and [tex]\(\frac{1}{2}\)[/tex] from both sides:
[tex]\[ 4 - \frac{1}{2} = x \implies \frac{8}{2} - \frac{1}{2} = x \implies \frac{7}{2} = x \][/tex]
Thus, this equation has One Solution.
To summarize, the classification of the solutions is as follows:
- No Solution: [tex]\(3z + 2.5 = 3.2 + 3z\)[/tex] and [tex]\(4.5r = 3.2 + 4.5r\)[/tex]
- One Solution: [tex]\(\frac{1}{2} y + 3.2 y = 20\)[/tex] and [tex]\(2x + 4 = 3x + \frac{1}{2}\)[/tex]
- Infinitely Many Solutions: [tex]\(\frac{15}{2} + 2z - \frac{1}{4} = 4z + \frac{29}{4} - 2z\)[/tex] and [tex]\(1.1 + \frac{3}{4} x + 2 = 3.1 + \frac{3}{4} x\)[/tex]
1. Equation 1: [tex]\(\frac{1}{2} y + 3.2 y = 20\)[/tex]
Combine like terms:
[tex]\[ \left(\frac{1}{2} + 3.2\right)y = 20 \implies \left(\frac{1}{2} + \frac{32}{10}\right) y = 20 \implies \left(\frac{1}{2} + \frac{16}{5}\right)y = 20 \implies \left(\frac{5 + 32}{10}\right)y = 20 \implies \frac{37}{10}y = 20 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{20 \times 10}{37} \implies y = \frac{200}{37} \][/tex]
Thus, this equation has One Solution.
2. Equation 2: [tex]\(\frac{15}{2} + 2z - \frac{1}{4} = 4z + \frac{29}{4} - 2z\)[/tex]
Combine like terms:
[tex]\[ \frac{15}{2} - \frac{1}{4} + 2z = 2z + \frac{29}{4} \][/tex]
Simplify the constants:
[tex]\[ \frac{30}{4} - \frac{1}{4} + 2z = 2z + \frac{29}{4} \implies \frac{29}{4} + 2z = 2z + \frac{29}{4} \][/tex]
Since the terms on both sides are identical, the equation always holds true, regardless of [tex]\( z \)[/tex]. Thus, this equation has Infinitely Many Solutions.
3. Equation 3: [tex]\(3z + 2.5 = 3.2 + 3z\)[/tex]
Subtract [tex]\( 3z \)[/tex] from both sides:
[tex]\[ 2.5 = 3.2 \][/tex]
This is a contradiction, so the equation has No Solution.
4. Equation 4: [tex]\(1.1 + \frac{3}{4} x + 2 = 3.1 + \frac{3}{4} x\)[/tex]
Combine like terms:
[tex]\[ 1.1 + 2 + \frac{3}{4} x = 3.1 + \frac{3}{4} x \implies 3.1 + \frac{3}{4} x = 3.1 + \frac{3}{4} x \][/tex]
Since the terms on both sides are identical, the equation always holds true, regardless of [tex]\( x \)[/tex]. Thus, this equation has Infinitely Many Solutions.
5. Equation 5: [tex]\(4.5r = 3.2 + 4.5r\)[/tex]
Subtract [tex]\( 4.5r \)[/tex] from both sides:
[tex]\[ 0 = 3.2 \][/tex]
This is a contradiction, so the equation has No Solution.
6. Equation 6: [tex]\(2x + 4 = 3x + \frac{1}{2}\)[/tex]
Subtract [tex]\( 2x \)[/tex] and [tex]\(\frac{1}{2}\)[/tex] from both sides:
[tex]\[ 4 - \frac{1}{2} = x \implies \frac{8}{2} - \frac{1}{2} = x \implies \frac{7}{2} = x \][/tex]
Thus, this equation has One Solution.
To summarize, the classification of the solutions is as follows:
- No Solution: [tex]\(3z + 2.5 = 3.2 + 3z\)[/tex] and [tex]\(4.5r = 3.2 + 4.5r\)[/tex]
- One Solution: [tex]\(\frac{1}{2} y + 3.2 y = 20\)[/tex] and [tex]\(2x + 4 = 3x + \frac{1}{2}\)[/tex]
- Infinitely Many Solutions: [tex]\(\frac{15}{2} + 2z - \frac{1}{4} = 4z + \frac{29}{4} - 2z\)[/tex] and [tex]\(1.1 + \frac{3}{4} x + 2 = 3.1 + \frac{3}{4} x\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.