At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Solve for [tex]\( x \)[/tex] where [tex]\( \pi \leq x \leq 2 \pi \)[/tex].

[tex]\[ \tan^2 x + 2 \sqrt{3} \tan x + 3 = 0 \][/tex]


Sagot :

To solve the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] for [tex]\(x\)[/tex] in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex], we will follow these steps:

1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].

Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]

So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]

2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]

To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]

3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.

- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.

- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].

Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]

So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.